Инфоурок / Математика / Презентации / Презентация по математике на тему "Архимедовы тела"

Презентация по математике на тему "Архимедовы тела"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Архимед (287 г. до н.э. – 212 г. до н.э) Архимедовы тела Полуправильные много...
Множество Архимедовых тел можно разбить на несколько групп. Первую из них сос...
В своей Нобелевской лекции американский ученый Смолли, один из авторов экспер...
Итак, как же сконструировать Архимедов усеченный икосаэдр из Платонова икосаэ...
Два последующих Архимедовых тела называются ромбокубооктаэдром и ромбоикосодо...
Наконец, существуют две так называемые «курносые» модификации – одна для куба...
Способ получения Архимедовых тел
8 1

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.


Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.


Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Описание презентации по отдельным слайдам:

№ слайда 1
Описание слайда:

№ слайда 2 Архимед (287 г. до н.э. – 212 г. до н.э) Архимедовы тела Полуправильные много
Описание слайда:

Архимед (287 г. до н.э. – 212 г. до н.э) Архимедовы тела Полуправильные многогранники Известно еще множество совершенных тел, получивших название полуправильных многогранников илиАрхимедовых тел. У них также все многогранные углы равны и все грани – правильные многоугольники, но несколько разных типов. Существует 13 полуправильных многогранников, открытие которых приписывается Архимеду. Архимедовы тела: (а) усеченный тетраэдр, (б) усеченный куб, (в) усеченный октаэдр, (г) усеченный додекаэдр, (д) усеченный икосаэдр (а) (б) (в) (д) (г) Рис.1

№ слайда 3 Множество Архимедовых тел можно разбить на несколько групп. Первую из них сос
Описание слайда:

Множество Архимедовых тел можно разбить на несколько групп. Первую из них составляют пять многогранников, которые получаются из Платоновых тел в результате их усечения. Усеченное тело – это тело с отрезанной верхушкой. Для Платоновых тел усечение может быть сделано таким образом, что и получающиеся новые грани и остающиеся части старых будут правильными многоугольниками. К примеру, тетраэдр (Рис. 1-а) можно усечь так, что его четыре треугольные грани превратятся в четыре гексагональные, и к ним добавятся четыре правильные треугольные грани. Таким путем могут быть получены пять Архимедовых тел: усеченный тетраэдр, усеченный гексаэдр (куб), усеченный октаэдр, усеченный додекаэдр и усеченный икосаэдр .

№ слайда 4 В своей Нобелевской лекции американский ученый Смолли, один из авторов экспер
Описание слайда:

В своей Нобелевской лекции американский ученый Смолли, один из авторов экспериментального открытия фуллеренов, говорит об Архимеде (287-212 гг. до н.э.) как о первом исследователе усеченных многогранников, в частности, усеченного икосаэдра, правда, оговариваясь, что возможно Архимед присваивает себе эту заслугу и, возможно, икосаэдры усекали задолго до него. Достаточно упомянуть найденные в Шотландии и датированные около 2000 г. до н.э. сотни каменных предметов (по всей видимости, ритуального назначения) в форме сфер и различных многогранников (тел, ограниченных со всех сторон плоскими гранями), включая икосаэдры и додекаэдры. Оригинальная работа Архимеда, к сожалению, не сохранилась, и ее результаты дошли до нас, что называется, «из вторых рук». Во времена Возрождения всеАрхимедовы тела одно за другим были «открыты» заново. В конце концов, Кеплер в 1619 г. в своей книге «Мировая гармония» («Harmonice Mundi») дал исчерпывающее описание всего набора архимедовых тел — многогранников, каждая грань которых представляет собой правильный многоугольник, а все вершины находятся в эквивалентном положении (как атомы углерода в молекуле С60). Архимедовы тела состоят не менее, чем из двух различных типов многоугольников, в отличие от 5 Платоновых тел, все грани которых одинаковы (как в молекуле С20, например).

№ слайда 5 Итак, как же сконструировать Архимедов усеченный икосаэдр из Платонова икосаэ
Описание слайда:

Итак, как же сконструировать Архимедов усеченный икосаэдр из Платонова икосаэдра? Ответ иллюстрируется с помощью рис. Действительно, как видно из Табл. 1, в любой из 12 вершин икосаэдра сходятся 5 граней. Если у каждой вершины отрезать (отсечь) 12 частей икосаэдра плоскостью, то образуется 12 новых пятиугольных граней. Вместе с уже имеющимися 20 гранями, превратившимися после такого отсечения из треугольных в шестиугольные, они составят 32 грани усеченного икосаэдра. При этом ребер будет 90, а вершин 60. Другую группу Архимедовых тел составляют два тела, именуемые квазиправильными многогранниками. Частица «квази» подчеркивает, что грани этих многогранников представляют собой правильные многоугольники всего двух типов, причем каждая грань одного типа окружена многоугольниками другого типа. Эти два тела носят название ромбокубооктаэдром и икосододекаэдром

№ слайда 6 Два последующих Архимедовых тела называются ромбокубооктаэдром и ромбоикосодо
Описание слайда:

Два последующих Архимедовых тела называются ромбокубооктаэдром и ромбоикосододекаэдром Архимедовы тела: (а) ромбокубооктаэдр, (б) ромбоикосододекаэдр (а) (б)

№ слайда 7 Наконец, существуют две так называемые «курносые» модификации – одна для куба
Описание слайда:

Наконец, существуют две так называемые «курносые» модификации – одна для куба (курносый куб), другая – для додекаэдра (курносый додекаэдр) (Рис. 6). Рисунок 6. Архимедовы тела: (а) курносый куб, (б) курносый додекаэдр (а) (б)

№ слайда 8 Способ получения Архимедовых тел
Описание слайда:

Способ получения Архимедовых тел

Общая информация

Номер материала: ДБ-286589

Похожие материалы