Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Презентации / Призма. Прямая и наклонная
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Призма. Прямая и наклонная

библиотека
материалов
ПРИЗМА.
Определение 1. Многогранник, две грани которого - одноименные многоугольники,...
Все призмы делятся на прямые и наклонные. (рис. 2) Если боковое ребро призмы...
Свойства призмы. 1. Основания призмы являются равными многоугольниками. 2. Бо...
Площадь поверхности призмы и площадь боковой поверхности призмы. Поверхность...
Доказательство. Боковые грани прямой призмы - прямоугольники, основания котор...
Сечение призмы 1. Сечение призмы плоскостью, параллельной основанию. В сечени...
Сечение ПРИЗМЫ.
Определение 2. Прямая призма, основанием которой служит правильный многоуголь...
Сечение правильной призмы. 1. Сечение правильной призмы плоскостью, параллель...
Симметрия правильной призмы 1. Центр симметрии при четном числе сторон основа...
 2. Плоскости симметрии: плоскость, проходящая через середины боковых ребер;...
 3. Оси симметрии: при четном числе сторон основания — ось симметрии, проходя...
Задача. Дано: Сторона основания правильной треугольной призмы равна 8 см, бок...
14 1

Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Описание презентации по отдельным слайдам:

№ слайда 1 ПРИЗМА.
Описание слайда:

ПРИЗМА.

№ слайда 2 Определение 1. Многогранник, две грани которого - одноименные многоугольники,
Описание слайда:

Определение 1. Многогранник, две грани которого - одноименные многоугольники, лежащие в параллельных плоскостях, а любые два ребра, не лежащие в этих плоскостях, параллельны, называется призмой. Термин “призма” греческого происхождения и буквально означает “отпиленное” (тело). Многоугольники, лежащие в параллельных плоскостях, называют основаниями призмы, а остальные грани - боковыми гранями. Поверхность призмы, таким образом, состоит из двух равных многоугольников (оснований) и параллелограммов (боковых граней). Различают призмы треугольные, четырехугольные, пятиугольные и т.д. в зависимости от числа вершин основания.

№ слайда 3 Все призмы делятся на прямые и наклонные. (рис. 2) Если боковое ребро призмы
Описание слайда:

Все призмы делятся на прямые и наклонные. (рис. 2) Если боковое ребро призмы перпендикулярно плоскости ее основания, то такую призму называют прямой; если боковое ребро призмы перпендикулярно плоскости ее основания, то такую призму называют наклонной. У прямой призмы боковые грани - прямоугольники. Перпендикуляр к плоскостям оснований, концы которого принадлежат этим плоскостям, называют высотой призмы.

№ слайда 4 Свойства призмы. 1. Основания призмы являются равными многоугольниками. 2. Бо
Описание слайда:

Свойства призмы. 1. Основания призмы являются равными многоугольниками. 2. Боковые грани призмы являются параллелограммами. 3. Боковые ребра призмы равны.

№ слайда 5 Площадь поверхности призмы и площадь боковой поверхности призмы. Поверхность
Описание слайда:

Площадь поверхности призмы и площадь боковой поверхности призмы. Поверхность многогранника состоит из конечного числа многоугольников (граней). Площадь поверхности многогранника есть сумма площадей всех его граней. Площадь поверхности призм (Sпр) равна сумме площадей ее боковых граней (площади боковой поверхности Sбок) и площадей двух оснований (2Sосн) - равных многоугольников: Sпов=Sбок+2Sосн. Теорема. Площадь боковой поверхности призмы равна произведению периметра ее перпендикулярного сечения и длины бокового ребра.

№ слайда 6 Доказательство. Боковые грани прямой призмы - прямоугольники, основания котор
Описание слайда:

Доказательство. Боковые грани прямой призмы - прямоугольники, основания которых-стороны основания призмы, а высоты равны высоте h призмы. Sбок поверхности призмы равна сумме S указанных треугольников, т.е. равна сумме произведений сторон основания на высоту h. Вынося множитель h за скобки, получим в скобках сумму сторон основания призмы, т.е. периметр P. Итак, Sбок =Ph. Теорема доказана. Следствие. Площадь боковой поверхности прямой призмы равна произведению периметра ее основания и высоты. Действительно, у прямой призмы основание можно рассматривать как перпендикулярное сечение, а боковое ребро есть высота.

№ слайда 7 Сечение призмы 1. Сечение призмы плоскостью, параллельной основанию. В сечени
Описание слайда:

Сечение призмы 1. Сечение призмы плоскостью, параллельной основанию. В сечении образуется многоугольник, равный многоугольнику, лежащему в основании. 2. Сечение призмы плоскостью, проходящей через два не соседних боковых ребра. В сечении образуется параллелограмм. Такое сечение называется диагональным сечением призмы. В некоторых случаях может получаться ромб, прямоугольник или квадрат.

№ слайда 8 Сечение ПРИЗМЫ.
Описание слайда:

Сечение ПРИЗМЫ.

№ слайда 9 Определение 2. Прямая призма, основанием которой служит правильный многоуголь
Описание слайда:

Определение 2. Прямая призма, основанием которой служит правильный многоугольник, называется правильной призмой. Свойства правильной призмы 1. Основания правильной призмы являются правильными многоугольниками. 2. Боковые грани правильной призмы являются равными прямоугольниками. 3. Боковые ребра правильной призмы равны.

№ слайда 10 Сечение правильной призмы. 1. Сечение правильной призмы плоскостью, параллель
Описание слайда:

Сечение правильной призмы. 1. Сечение правильной призмы плоскостью, параллельной основанию. В сечении образуется правильный многоугольник, равный многоугольнику, лежащему в основании. 2. Сечение правильной призмы плоскостью, проходящей через два не соседних боковых ребра. В сечении образуется прямоугольник. В некоторых случаях может образоваться квадрат.

№ слайда 11 Симметрия правильной призмы 1. Центр симметрии при четном числе сторон основа
Описание слайда:

Симметрия правильной призмы 1. Центр симметрии при четном числе сторон основания — точка пересечения диагоналей правильной призмы (рис. 6)

№ слайда 12  2. Плоскости симметрии: плоскость, проходящая через середины боковых ребер;
Описание слайда:

 2. Плоскости симметрии: плоскость, проходящая через середины боковых ребер; при четном числе сторон основания — плоскости, проходящие через противолежащие ребра (рис. 7).

№ слайда 13  3. Оси симметрии: при четном числе сторон основания — ось симметрии, проходя
Описание слайда:

 3. Оси симметрии: при четном числе сторон основания — ось симметрии, проходящая через центры оснований, и оси симметрии, проходящие через точки пересечения диагоналей противолежащих боковых граней (рис. 8).

№ слайда 14 Задача. Дано: Сторона основания правильной треугольной призмы равна 8 см, бок
Описание слайда:

Задача. Дано: Сторона основания правильной треугольной призмы равна 8 см, боковое ребро - 6 см. Найдите Sсеч, проходящего через сторону верхнего основания и противолежащую вершину нижнего основания. Решение: Треугольник A1B1C1 - равнобедренный(A1B=C1B как диагональ равных граней) 1)Рассмотрим треугольник BCC1– прямоугольный BC12=BM2+CC12 BC1= √ 64+36=10 см 2) Рассмотрим треугольник BMC1– прямоугольный BC12=BM2+MC12 BM12=BC12-MC12 BM12=100-16=84 BM1= √ 84=2 √ 21 см 3) Sсеч=12 A1C1*BM= 12*2√ 21 см*8=8 √ 21


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 23.01.2016
Раздел Математика
Подраздел Презентации
Просмотров1524
Номер материала ДВ-369736
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх