2010045
столько раз учителя, ученики и родители
посетили официальный сайт проекта «Инфоурок»
за прошедшие 24 часа
Добавить материал и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015

Скидка 0%

112 курсов профессиональной переподготовки от 3540 руб.

268 курсов повышения квалификации от 840 руб.

МОСКОВСКИЕ ДОКУМЕНТЫ ДЛЯ АТТЕСТАЦИИ

Лицензия на осуществление образовательной деятельности №038767 выдана 26 сентября 2017 г. Департаменотом образования города Москвы

Инфоурок Геометрия Рабочие программыРабочая программа по геометрии 9 класс

Рабочая программа по геометрии 9 класс

Международный конкурс

Идёт приём заявок

Подать заявку

Для учеников 1-11 классов и дошкольников

16 предметов

Выберите документ из архива для просмотра:
24.33 КБ КТП геом9 2016-2017 гот.xlsx
26.25 КБ РП геом9 2016-2017.docx

Выбранный для просмотра документ РП геом9 2016-2017.docx

библиотека
материалов

МБОУ «Хатын-Арынская средняя общеобразовательная школа им.И.Е.Винокурова МО «Намский улус» РС (Я)»



«Утверждаю»

директор «МБОУ Хатын-Арынская СОШ им.И.Е.Винокурова»

_____________________/Д.И.Ноговицын/

«_____»__________________2016 г.

«Согласована»

зам.директора по УМР

_____________________/А.С.Павлова/

«_____»_________________2016 г.

«Рассмотрена»

на заседании МО

Протокол №_______________

«_____»__________________2016 г.










Рабочая программа по геометрии, 9 класс








Кривогорницына Виктория Павловна, учитель математики, СЗД










2016-2017 учебный год


Пояснительная записка


Рабочая программа по геометрии для 9 класса составлена на основе: Федерального государственного стандарта общего образования, Примерной программы основного общего образования, учебного плана МБОУ «Хатын-Арынская СОШ им.И.Е.Винокурова» на 2016-2017 учебный год. По учебному плану на изучение геометрии в 9 классе отводится 2 часа в неделю, итого 70 часов в год. В связи с выпадением праздничных дней 24.02.17, 08.03.17 по расписанию, а также с учетом графика сдачи ОГЭ, фактически КТП рассчитано на 65 часов. Обучение ведется по учебнику Геометрия 7-9, Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – М.: Просвещение, 2013


Требования к уровню подготовки учащихся:

На основании требований Государственного образовательного стандарта в содержании предполагается реализовать актуальные в настоящее время компетентностный, личностно ориентированный, деятельностный подходы, которые определяют задачи обучения:

Продолжить овладение системой геометрических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования.

Продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе; ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

Воспитание культуры личности, отношение к геометрии как к части общечеловеческой культуры, понимание значимости геометрии для научно-технического прогресса.

В ходе преподавания геометрии в 9 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

овладевали приемами аналитико-синтетической деятельности при доказательстве теории и решении задач;

целенаправленно обращались к примерам из практики, что развивает умения обучающихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовали язык геометрии для их описания, приобретали опыт исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи; проведения доказательных рассуждений, аргументаций, выдвижения гипотез и их обоснования; поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.


В результате изучения геометрии в 9 классе обучающиеся должны уметь/знать:

  • Знать определения вектора и равных векторов; изображать и обозначать векторы, откладывать от данной точки вектор, равный данному; уметь решать задачи.

  • Уметь объяснить, как определяется сумма двух и более векторов; знать законы сложения векторов, определение разности двух векторов; знать, какой вектор называется противоположным данному; уметь строить сумму двух и более данных векторов, пользуясь правилами треугольника, параллелограмма, многоугольника, строить разность двух данных векторов; уметь решать задачи.

  • Знать, какой вектор называется произведением вектора на число; уметь формулировать свойства умножения вектора на число; знать, какой отрезок называется средней линией трапеции; уметь формулировать и доказывать теорему о средней линии трапеции; уметь решать задачи.

  • Знать формулировки и доказательства леммы о коллинеарных векторах и теоремы о разложении вектора по двум неколлинеарным векторам, правила действий над векторами с заданными координатами; уметь решать задачи.

  • Знать и уметь выводить формулы координат вектора через координаты его конца и начала, координат середины отрезка, длины вектора и расстояния между двумя точками; уметь решать задачи.

  • Знать и уметь выводить уравнения окружности и прямой; уметь строить окружности и прямые, заданные уравнениями; уметь решать задачи.

  • Знать, как вводятся синус, косинус и тангенс углов от 0º до 180º; уметь доказывать основное тригонометрическое тождество; знать формулы для вычисления координат точки; уметь решать задачи.

  • Знать и уметь доказывать теорему о площади треугольника, теоремы синусов и косинусов; уметь решать задачи.

  • Уметь объяснить, что такое угол между векторами; знать определение скалярного произведения векторов, условие перпендикулярности ненулевых векторов, выражение скалярного произведения в координатах и его свойства; уметь решать задачи.

  • Знать определение правильного многоугольника; знать и уметь доказывать теоремы об окружности, описанной около правильного многоугольника, и окружности, вписанной в правильный многоугольник; знать формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса вписанной в него окружности; уметь их вывести и применять при решении задач.

  • Знать формулы длины окружности и дуги окружности, площади круга и кругового сектора; уметь применять их при решении задач.

  • Уметь объяснить, что такое отображение плоскости на себя; знать определение движания плоскости; уметь доказывать, что осевая и центральная симметрии являются движениями и что при движении отрезок отображается на отрезок, а треугольник – на равный ему треугольник; уметь решать задачи.

  • Уметь объяснить, что такое параллельный перенос и поворот; доказывать, что параллельный перенос и поворот являются движениями плоскости; уметь решать задачи.

  • Иметь представления о простейших многогранниках, телах и поверхностях в пространстве; знать формулы для вычисления площадей поверхностей и объёмов тел.


Формирование УУД:

Регулятивные УУД:

  • определять цель деятельности на уроке с помощью учителя и самостоятельно;

  • учиться совместно с учителем обнаруживать и формулировать учебную проблему;

  • учиться планировать учебную деятельность на уроке;

  • высказывать свою версию, пытаться предлагать способ её проверки (на основе продуктивных заданий в учебнике);

  • работая по предложенному плану, использовать необходимые средства (учебник, компьютер и инструменты);

  • определять успешность выполнения своего задания в диалоге с учителем.

Средством формирования регулятивных действий служат технология проблемного диалога на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

  • ориентироваться в своей системе знаний: понимать, что нужна дополнительная информация (знания) для решения учебной задачи в один шаг;

  • делать предварительный отбор источников информации для решения учебной задачи;

  • добывать новые знания: находить необходимую информацию, как в учебнике, так и в предложенных учителем словарях, справочниках и интернет-ресурсах;

  • добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.);

  • перерабатывать полученную информацию: наблюдать и делать самостоятельные выводы.

Средством формирования познавательных действий служит учебный материал и задания учебника, обеспечивающие первую линию развития - умение объяснять мир.

Коммуникативные УУД:

  • доносить свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне предложения или небольшого текста);

  • слушать и понимать речь других;

  • выразительно читать и пересказывать текст;

  • вступать в беседу на уроке и в жизни;

  • совместно договариваться о правилах общения и поведения в школе и следовать им;

  • учиться выполнять различные роли в группе (лидера, исполнителя, критика).

Средством формирования коммуникативных действий служат технология проблемного диалога (побуждающий и подводящий диалог), технология продуктивного чтения и организация работы в малых группах.


Содержание обучения


Векторы. Метод координат (19ч)

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Знать:

- понятие вектора, равенства векторов, сложение и вычитание векторов, умножение вектора на число, разложение вектора по двум неколлинеарным векторам, уравнение окружности, прямой

Уметь:

- строить векторы, складывать, вычитать векторы, умножать вектор на число, решать простейшие задачи в координатах, записывать уравнение окружности и прямой

Соотношения между сторонами и углами треугольника. Скалярное произведения векторов. (11 часов)

Треугольник. Синус, косинус, тангенс и котангенс острого угла прямоугольного треугольника и углов от 0⁰ до 180⁰. Приведение к острому углу. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс одного и того же угла. Теорема о площади треугольника, синусов и косинусов, примеры их применения для вычисления элементов треугольника.

Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники. Скалярное произведение векторов. Угол между ними. Скалярное произведение векторов, выраженные в координатах.

Знать:

- как вводятся синус, косинус тангенс углов от 0⁰ до 180⁰, основное тригонометрическое тождество и формулы для вычисления координат точки;

- теоремы о площади треугольника, синусов и косинусов; Что такое угол между векторами, определение скалярного произведения векторов, условие перпендикулярности ненулевых векторов, выражение скалярного произведения в координатах и его свойства;

- определение правильного многоугольника, теоремы об окружности, описанной около правильного многоугольника, и окружности, вписанной в правильный многоугольник; формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса вписанной в него окружности;

Уметь:

- доказывать основное тригонометрическое тождество;

- доказывать теоремы о площади треугольника, синусов и косинусов;

- выводить формулу скалярного произведения в координатах;

Длина окружности и площадь круга (12 часов).

Периметр многоугольника. Длина окружности, число ∏; длина дуги. Площадь круга и площадь сектора.

Знать:

- формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса вписанной в него окружности;

- формулы для длины окружности и длины дуги окружности, формулы площади круга и площади кругового сектора;

Уметь:

- доказывать теоремы об окружностях, описанных около правильного многоугольника и вписанной в правильный многоугольник;

Уметь выводить формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса вписанной в него окружности;

Уметь выводить формулы для длины окружности и длины дуги окружности, формулы площади круга и площади кругового сектора;

Движения (8 часов).

Отображение плоскости на себя. Движение плоскости, виды движений. Симметрия фигур, осевая симметрия, параллельный перенос, поворот, центральная симметрия.

Знать:

- что такое отображение плоскости на себя, определение движения плоскости, виды движения плоскости;

Уметь:

- доказывать, что осевая и центральная симметрии являются движениями, параллельный перенос и поворот – движения;

Начальные сведения из стереометрии (8 часов).

Прямоугольный параллелепипед, призма и пирамида. Объемы тел. Формулы объемов. Тела вращения и поверхности вращения.

Знать:

- что такое многогранник и его элементы; выпуклые и невыпуклые;

- виды многогранников, их свойства;

- что такое объем тел, свойства объемов тел;

- формулы для вычисления площадей поверхности и объемов тел;

Уметь:

- находить площади поверхностей многогранников и их объемы;

Об аксиомах планиметрии (2часа)

Повторение курса планиметрии (5 часов).

Треугольник. Окружность. Четырехугольники. Многоугольники. Векторы. Метод координат. Движения.

Уметь: решать задачи по курсу планиметрии.

Резерв 5 часов

Курс профессиональной переподготовки
Учитель математики
Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:
также Вы можете выбрать тип материала:
Приглашаем принять участие МЕЖДУНАРОДНЫЙ ПЕДАГОГИЧЕСКИЙ «ИНФОФОРУМ» Осталось всего 50 мест на очное участие! Подать заявку Очное участие Дистанционное участие Курс повышения квалификации (36 часов) + Сертификат участника “Инфофорума”

Вам будут интересны эти курсы:

Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
17 курсов по пожарно-техническому минимуму
Обучение от 2 дней
дистанционно
Удостоверение
Программы актуальны на 2019 г., согласованы с МЧС РФ
2 500 руб. до 1 500 руб.
Подробнее