Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 5-9кл
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа по математике 5-9кл

библиотека
материалов

C:\Users\Тыллыминская СОШ\Desktop\титульные КТП\математика\2014-2015\раб программа 5-9 кл математика.jpgСодержание

Пояснительная записка.......................................................................... …………………..3

Обшая характеристика учебного предмета..............................................................3

Ценностные ориентиры содержания учебного предмета........................................6

Результаты изучения учебного предмета.................................................................7

Место учебного предмета в учебном плане.............................................................9

Содержание основного общего образования по учебному предмету............................11

Примерное тематическое планирование..........................................................................17

Рекомендации по оснащению учебного процесса............................................................38



























Пояснительная записка

Общая характеристика учебного предмета

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:

1) в направлении личностного развития:

формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

. • развитие интереса к математическому творчеству и математических способностей;

2) в метапредметном направлении:

развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

формирование общих способов интеллектуальной деятельности,, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

3) в предметном направлении:

овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. В программе оно представлено в виде совокупности содержательных разделов, конкретизирующих соответствующие блоки фундаментального ядра применительно к основной школе. Программа регламентирует объем материала, обязательного для изучения в основной школе, а также дает примерное его распределение между 5—6 и 7—9 классами.

Содержание математического образования в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей обще интеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности — умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется распределенно — в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.



Ценностные ориентиры содержания учебного предмета

Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

Результаты изучения учебного предмета

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:

1) в личностном направлении:

умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

креативность мышления, инициатива, находчивость, активность при решении математических задач;

умение контролировать процесс и результат учебной математической деятельности;

способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

2) в метапредметном направлении:

первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;

умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

3) в предметном направлении:

овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;

умение проводить классификации, логические обоснования, доказательства математических утверждений;

умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;

развитие представлений о числе и числовых системах от натуральных до действительных чисел, овладение навыками устных, письменных, инструментальных вычислений;

овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

овладение системой функциональных понятий, функциональным языком и символикой, умение на основе функционально-графических представлений описывать и анализировать реальные зависимости;

овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.



Место учебного предмета в учебном плане

Базисный учебный (образовательный) план на изучение математики в основной школе отводит 5 учебных часов в неделю в течение каждого года обучения, всего 875 уроков. Учебное время может быть увеличено до 6 и более уроков в неделю за счет вариативной части Базисного плана.

Согласно проекту Базисного учебного (образовательного) плана в 5—6 классах изучается предмет «Математика» (интегрированный предмет), в 7—9 классах параллельно изучаются предметы «Алгебра» и «Геометрия».

Распределение учебного времени между этими предметами представлено в таблице.

Классы

Предметы математического

цикла

Количество часов на ступени основного образования

5-6

Математика

350

7-9

Алгебра

315



Геометрия

210

Всего

875

Предмет «Математика» в 5—6 классах включает арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.

Предмет «Алгебра» включает некоторые вопросы арифметики, развивающие числовую линию 5—6 классов, собственно алгебраический материал, элементарные функции, а также элементы вероятностно-статистической линии.

В рамках учебного предмета «Геометрия» традиционно изучаются евклидова геометрия, элементы векторной алгебры, геометрические преобразования.

В силу новизны для школы вероятностно-статистического материала и отсутствия методических традиций возможна вариативность при его структурировании. Начало изучения соответствующего материала может быть отнесено и к 5—6, и к 7—9 классам. Кроме того, его изложение возможно как в рамках курса алгебры, так и в виде отдельного модуля. Последний вариант может быть реализован только при условии увеличения числа часов на математику по сравнению с инвариантной частью Базисного учебного (образовательного) плана.










Содержание основного общего образования по учебному предмету

АРИФМЕТИКА (240 ч)

Натуральные числа. Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.

Степень с натуральным показателем.

Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическими способами.

Делители и кратные. Свойства и признаки делимости. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.

Дроби. Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

Проценты; нахождение процентов от величины и величины по ее процентам. Отношение; выражение отношения в процентах. Пропорция; основное свойство пропорции.

Решение текстовых задач арифметическими способами.

Рациональные числа. Положительные и отрицательные числа, модуль числа. Множество целых чисел. Множество рат циональных чисел; рациональное число как отношениеhello_html_4b823660.gif, где т целое число, и — натуральное число. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий. Степень с целым показателем.

Действительные числа. Квадратный корень из числа. Корень третьей степени.

Понятие об иррациональном числе. Иррациональность числа V2 и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действительных чисел в виде бесконечных десятичных дробей. Сравнение действительных чисел.

Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.

Измерения, приближении, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя — степени 10 — в записи числа.

Приближенное значение величины, точность приближения. Округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.

АЛГЕБРА (200 ч)

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен; разложение квадратного трехчлена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказательство тождеств.

Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям.

Уравнения. Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвертой степени. Решение дробно-рациональных уравнений.

Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства. Числовые неравенства и их свойства.

Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.

ФУНКЦИИ (65 ч)

Основные понятия. Зависимости между величинами. Представление зависимостей формулами. Понятие функции.

Область определения и множество значений функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.

Числовые функции. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, ее график и свойства. Квадратичная функция, ее график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства.

Графики функций hello_html_m495ad477.gif, hello_html_2189d146.gif, hello_html_m75db2941.gif.

Числовые последовательности. Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой rt-ro члена.

Арифметическая и геометрическая прогрессии. Формулы л-го члена арифметической и геометрической прогрессий, суммы первых и членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

ВЕРОЯТНОСТЬ И СТАТИСТИКА (50 ч)

Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании.

Случайные события и вероятность. Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.

Комбинаторика. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.

ГЕОМЕТРИЯ (255 ч)

Наглядная геометрия. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности.

Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины.

Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь квадрата. Приближенное измерение площадей фигур на клетчатой бумаге. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника.

Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Центральный угол, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие о равенстве фигур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Периметр многоугольника.

Длина окружности, число л; длина дуги окружности.

Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.

Решение задач на вычисление и доказательство с использованием изученных формул.

Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.

Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.

ЛОГИКА И МНОЖЕСТВА (10 ч)

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.

Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Понятие о равносильности, следовании, употребление логических связок если ..., то ..., в том и только в том случае, логические связки и, или.

МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ1

История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л. Эйлер.

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырех. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.


1 Содержание раздела вводится по мере изучения других вопросов.


От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построение с помощью циркуля и линейки. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. История числа п. Золотое сечение. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата.

Софизмы, парадоксы.

Резерв времени 55 ч


Примерное тематическое планирование

Тематическое планирование реализует один из возможных подходов к распределению материала, представленного в разделе «Содержание основного общего образования по учебному предмету» между 5—6 и 7—9 классами. Оно не носит обязательного характера и не исключает возможностей иного распределения содержания между указанными этапами обучения. Например, в предлагаемом примерном тематическом планировании элементы вероятностно-статистической линии включены в курс начиная с 5—6 классов. В то же время начало изучения этого материала может быть отнесено и к 7—9 классам. Имеется также опыт изучения этого материала в виде отдельного модуля. Изучение теоретико-множественных понятий в данном тематическом планировании представлено в 7—9 классах, в то же время оно может быть отнесено и к 5—6 классам.

В примерном тематическом планировании разделы основного содержания математического образования разбиты на темы, в которых в ряде случаев программное содержание представлено более детально. Приведенный перечень тем не задает последовательности их рассмотрения в курсе; структурирование материала — прерогатива рабочих программ.

Особенностью примерного тематического планирования является то, что в нем содержится описание возможных видов деятельности учащихся в процессе усвоения соответствующего содержания, направленных на достижение поставленных целей обучения. Это ориентирует учителя на усиление деятельностного подхода в обучении, на организацию разнообразной учебной деятельности, отвечающей современным психолого-педагогическим воззрениям, на использование современных технологий.

Тематическое планирование составлен из расчета часов, указанных в проекте Базисного учебного (образовательного) плана (БУП) образовательных учреждений общего образования. В примерном тематическом планировании приведено минимальное количество часов, необходимое для изучения каждой темы, а также некоторый резерв учебного времени. Резервное время по курсу может быть использовано по-разному (например, для изучения дополнительных вопросов, которые включаются в курс при составлении рабочих программ, для организации обобщающего повторения, для более основательного изучения некоторых тем примерной программы). При составлении рабочей программы образовательное учреждение может увеличить указанное в проекте БУП минимальное учебное время за счет его вариативного компонента.

Примерное тематическое планирование

МАТЕМАТИКА 56 классы (350 ч)


Характеристика основных видов деятельности

Основное содержание по темам

ученика (на уровне учебных действий)

1

2

1. Натуральные числа (50 ч)


Натуральный ряд. Десятичная система счисления.

Арифметические действия с натуральными числами.

Свойства арифметических действий.

Понятие о степени с натуральным показателем.

Квадрат и куб числа.

Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях,

использование скобок.

Решение текстовых задач арифметическими способами.

Делители и кратные. Наибольший общий делитель; наименьшее общее кратное. Свойства делимости. Признаки делимости на 2, 3, 5, 9, 10. Простые

и составные числа. Разложение натурального числа на простые множители. Деление с остатком

Описывать свойства натурального ряда.

Читать и записывать натуральные числа, сравнивать

и упорядочивать их.

Выполнять вычисления с натуральными числами; вычислять значения степеней.

Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения.

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответтвие условию.

Формулировать определения делителя и кратного, простого числа и составного числа, свойства и признаки делимости.

Доказывать и опровергать с помощью контрпримеров утверждения о делимости чисел. Классифицировать натуральные числа (четные и нечетные, по остаткам от де-

ления на 3 и т. п.). Исследовать простейшие числовые закономерности, проводить числовые эксперименты (в том числе с использованием калькулятора, компьютера)

2. Дроби (120ч.)

Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

Отношение. Пропорция; основное свойство пропорции.

Проценты; нахождение процентов от величины и величины по ее процентам; выражение отношения в процентах. Решение текстовых задач арифметическими способами

Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби.

Формулировать, записывать с помощью букв основное свойство обыкновенной дроби, правила действий с обыкновенными дробями.

Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их. Выполнять вычисления с обыкновенными дробями.

Читать и записывать десятичные дроби. Представлять обыкновенные дроби в виде десятичных и десятичные в виде обыкновенных; находить десятичные приближения обыкновенных дробей.

Сравнивать и упорядочивать десятичные дроби. Выполнять вычисления с десятичными дробями.

Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях.

Выполнять прикидку и оценку в ходе вычислений.

Объяснять, что такое процент. Представлять проценты в виде дробей и дроби в виде процентов.

Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их. Приводить примеры использования отношений на практике.

Решать задачи на проценты и дроби (в том числе задачи из реальной практики), используя при необходимости калькулятор; использовать понятия отношения и пропорции при решении задач.


Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.

Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые эксперименты (в том числе с использованием калькулятора,

компьютера)

3. Рациональные числа (40 ч)

Положительные и отрицательные числа, модуль числа. Изображение чисел точками координатной прямой; геометрическая интерпретация модуля числа.

Множество целых чисел. Множество рациональных чисел. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий

Приводить примеры использования в окружающем мире положительных и отрицательных чисел (температура,

выигрыш - проигрыш, выше - ниже уровня моря и т. п.).

Изображать точками координатной прямой положительные и отрицательные рациональные числа. Характеризовать множество целых чисел, множество рациональных чисел.

Формулировать и записывать с помощью букв свойства действий с рациональными числами, применять

для преобразования числовых выражений.

Сравнивать и упорядочивать рациональные числа. Выполнять вычисления с рациональными числами

4. Измерения, приближения, оценки. Зависимости между величинами (20 ч)

Примеры зависимостей между величинами скорость, время, расстояние; производительность, время,

работа; цена, количество, стоимость и др. Представление зависимостей в виде формул. Вычисления по формулам.

Решение текстовых задач арифметическими способами

Выражать одни единицы измерения величины в других единицах (метры в километрах, минуты в часах и т. п.).

Округлять натуральные числа и десятичные дроби. Выполнять прикидку и оценку в ходе вычислений.

Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам.

Использовать знания о зависимостях между величинами (скорость, время, расстояние; работа, производительность, время и т. п.) при решении текстовых задач

5. Элементы алгебры (25 ч)

Использование букв для обозначения чисел, для записи свойств арифметических действий.

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения.

Уравнение, корень уравнения. Нахождение неизвестных компонентов арифметических действий.

Декартовы координаты на плоскости. Построение точки по ее координатам, определение координат точки на плоскости

Читать и записывать буквенные выражения, составлять буквенные выражения по условиям задач.

Вычислять числовое значение буквенного выражения при заданных значениях букв.

Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между

компонентами арифметических действий. Строить на координатной плоскости точки и фигуры по заданным координатам; определять координаты точек

6. Описательная статистика. Вероятность. Комбинаторика (20 ч)

Представление данных в виде таблиц, диаграмм. Понятие о случайном опыте и событии, Достоверное и невозможное события. Сравнение шансов. Решение комбинаторных задач перебором вариантов

Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным, сравнивать величины, находить наибольшие и наименьшие значения и др. Выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ.

Приводить примеры случайных событий, достоверных и невозможных событий. Сравнивать шансы наступления

событий; строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др,

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям

7. Наглядная геометрия (45 ч)

Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, правильный многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников.

Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины.

Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Распознавать на чертежах, рисунках и моделях геометрические фигуры, конфигурации фигур (плоские и

пространственные). Приводить примеры аналогов геометрических фигур в окружающем мире.

Изображать геометрические фигуры и их конфигурации от руки и с использованием чертежных инструментов

Изображать геометрические фигуры на клетчатой бумаге.

Измерять с помощью инструментов и сравнивать длины отрезков и величины углов. Строить отрезки заданной

длины с помощью линейки и циркуля и углы заданной величины с помощью транспортира. Выражать одни единицы измерения длин через другие.

Вычислять площади квадратов и прямоугольников, используя формулы площади квадрата и площади прямоугольника. Выражать одни единицы измерения площади через другие.

Изготавливать пространственные фигуры из разверток; распознавать развертки куба, параллелепипеда, пирамиды, цилиндра и конуса. Рассматривать простейшие сечения пространственных фигур, получаемые путем предметного или компьютерного моделирования, определять их вид.

Вычислять объемы куба и прямоугольного параллелепипеда, используя формулы объема куба и объема прямоугольного параллелепипеда. Выражать одни единицы измерения объема через другие.

Исследовать и описывать свойства геометрических фигур (плоских и пространственных), используя эксперимент, наблюдение, измерение. Моделировать геометрические объекты, используя бумагу, пластилин, проволоку и др. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объектов.

Находить в окружающем мире плоские и пространственные симметричные фигуры.

Решать задачи на нахождение длин отрезков, периметров многоугольников, градусной меры углов, площадей квадратов и прямоугольников, объемов кубов и прямоугольных параллелепипедов, куба. Выделять в условии задачи данные, необходимые для ее решения, строить

логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи.

Изображать равные фигуры, симметричные фигуры

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь квадрата. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар.

сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники, правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда и объем куба. Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных

фигур

Резерв времени - 30 ч

АЛГЕБРА

7—9 классы (315 ч)

Основное содержание по темам

Характеристика основных видов деятельности ученика (на уровне учебных действий)

1

2

1. Действительные числа (15 ч)

Расширение множества натуральных чисел до множества целых, множества целых чисел до множества рациональных. Рациональное число как отношение hello_html_4b823660.gif, где т - целое число, ал- натуральное число.

Степень с целым показателем.

Квадратный корень из числа. Корень третьей степени.

Понятие об иррациональном числе. Иррациональность числа hello_html_39f1b7ec.gifи несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел, представление действительных чисел в виде бесконечных десятичных дробей. Сравнение действительных чисел.

Взаимно однозначное соответствие между действительными числами и точками координатной прямой. Числовые промежутки: интервал, отрезок, луч

Описывать множество целых чисел, множество рациональных чисел, соотношение между этими множествами.

Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами, вычислять значения степеней с целым показателем.

Формулировать определение квадратного корня из числа. Использовать график функции hello_html_7d177a5.gif для нахождения квадратных корней. Вычислять точные и приближенные значения корней, используя при необходимости калькулятор; проводить оценку квадратных корней.

Формулировать определение корня третьей степени; находить значения кубических корней, при необходимости используя калькулятор.

Приводить примеры иррациональных чисел; распознавать рациональные и иррациональные числа; изображать числа точками координатной прямой.

Находить десятичные приближения рациональных и иррациональных чисел; сравнивать и упорядочивать действительные числа,

Описывать множество действительных чисел.

Использовать в письменной математической речи обозначения и графические изображения числовых множеств, теоретико-множественную символику






2. Измерения, приближения, оценки (10 ч)

Приближенное значение величины, точность приближения. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя - степени 10 в записи числа.

Прикидка и оценка результатов вычислений

Находить, анализировать, сопоставлять числовые характеристики объектов окружающего мира.

Использовать запись чисел в стандартном виде для выражения размеров объектов, длительности процессов в окружающем мире.

Сравнивать числа и величины, записанные с использованием степени 10.

Использовать разные формы записи приближенных значений; делать выводы о точности приближения по записи приближенного значения.

Выполнять вычисления с реальными данными.

Выполнять прикидку и оценку результатов вычислений

3. Введение в алгебру (8 ч)

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных.

Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество

Выполнять элементарные знаково-символические действия: применять буквы для обозначения чисел, для записи общих утверждений; составлять буквенные выражения по условиям, заданным словесно, рисунком или чертежом; преобразовывать алгебраические суммы и произведения (выполнять приведение подобных слагаемых, раскрытие скобок, упрощение произведений).

Вычислять числовое значение буквенного выражения; находить область допустимых значений переменных в выражении

4. Многочлены (45 ч)

Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения.

Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен, разложение квадратного трехчлена на множители

Формулировать, записывать в символической форме и обосновывать свойства степени с натуральным показателем; применять свойства степени для преобразования выражений и вычислений. Выполнять действия с многочленами.

Выводить формулы сокращенного умножения, применять их в преобразованиях выражений и вычислениях.

Выполнять разложение многочленов на множители.

Распознавать квадратный трехчлен, выяснять возможность разложения на множители, представлять квадратный трехчлен в виде произведения линейных множителей.

Применять различные формы самоконтроля при выполнении преобразований



5. Алгебраические дроби (22 ч)

Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Сложение, вычитание, умножение, деление алгебраических дробей.

Степень с целым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказательство тождеств

Формулировать основное свойство алгебраической дроби и применять его для преобразования дробей.

Выполнять действия с алгебраическими дробями. Представлять целое выражение в виде многочлена, дробное - в виде отношения многочленов; доказывать тождества.

Формулировать определение степени с целым показателем. Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем; применять свойства степени для преобразования выражений и вычислений

6. Квадратные корни (12 ч)

Понятия квадратного корня, арифметического квадратного корня. Уравнение вида х2=а. Свойства арифметических квадратных корней: корень из произведения частного, степени; тождества (hello_html_m1b3b1758.gif)2 = а, где аhello_html_m6d1256d7.gif0, hello_html_729dcdb3.gif. Применение свойств арифметических квадратных корней для преобразования числовых выражений и вычислений

Доказывать свойства арифметических квадратных корней; применять их для преобразования выражений,

Вычислять значения выражений, содержащих квадратные корни; выражать переменные из геометрических и физических формул. Исследовать уравнение вида x2 = а; находить точные и приближенные корни при а > О

7. Уравнения с одной переменной (38 ч)

Уравнение с одной переменной. Корень уравнения.

Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. Решение уравнений, сводящихся к линейным.

Квадратное уравнение. Неполные квадратные уравнения. Формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к квадратным. Биквадратное уравнение.

Примеры решения уравнений третьей и четвертой степени разложением на множители.

Решение дробно-рациональных уравнений.

Решение текстовых задач алгебраическим способом


Распознавать линейные и квадратные уравнения, целые и дробные уравнения.

Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; решать дробно-рациональные уравнения.

Исследовать квадратные уравнения по дискриминанту и коэффициентам.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение; интерпретировать результат


8. Системы уравнений (30 ч)

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем уравнений. Система двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Решение систем двух уравнений, одно из которых линейное, а другое второй степени. Примеры решения систем нелинейных уравнений.

Решение текстовых задач алгебраическим способом.


Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решения уравнений с двумя переменными.

Решать задачи, алгебраической моделью которых является уравнение с двумя переменными; находить целые решения путем перебора.

Решать системы двух уравнений с двумя переменными, указанные в содержании.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; решать составленную систему уравнений; интерпретировать результат.

Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными.

График линейного уравнения с двумя переменными, угловой коэффициент прямой; условие параллельности прямых.

Графики простейших нелинейных уравнений (парабола, гипербола, окружность).

Графическая интерпретация системы уравнений с двумя переменными

Строить графики уравнений с двумя переменными. Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков.

Решать и исследовать уравнения и системы уравнений на основе функционально-графических представлений уравнений

9. Неравенства (20 ч)

Числовые неравенства и их свойства.

Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства.

Системы линейных неравенств с одной переменной

Формулировать свойства числовых неравенств, иллюстрировать их на координатной прямой, доказывать алгебраически; применять свойства неравенств при решении задач.

Распознавать линейные и квадратные неравенства. Решать линейные неравенства, системы линейных неравенств. Решать квадратные неравенства на основе графических представлений

10. Зависимости между величинами (15 ч)

Зависимость между величинами.

Представление зависимостей между величинами в виде формул. Вычисления по формулам.

Прямая пропорциональная зависимость: задание формулой, коэффициент пропорциональности; свойства. Примеры прямо пропорциональных зависимостей.

Обратная пропорциональная зависимость: задание формулой, коэффициент обратной пропорциональности; свойства. Примеры обратных пропорциональных зависимостей.

Решение задач на прямую пропорциональную и

обратную пропорциональную зависимости


Составлять формулы, выражающие зависимости между величинами, вычислять по формулам.

Распознавать прямую и обратную пропорциональные зависимости. Решать текстовые задачи на прямую и обратную пропорциональные зависимости (в том числе с контекстом из смежных дисциплин, из реальной жизни)

11. Числовые функции (35 ч)


Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функции, их отображение на графике: возрастание и убывание функции, нули функции, сохранение знака. Чтение и построение графиков функций.

Примеры графиков зависимостей, отражающих реальные процессы.

Функции, описывающие прямую и обратную пропорциональные зависимости, их графики.

Линейная функция, ее график и свойства.

Квадратичная функция, ее график и свойства.

Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций у = hello_html_m5a39810d.gif, у = hello_html_m38b8e446.gif, у = | х |


Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функций.

Строить по точкам графики функций. Описывать свойства функции на основе ее графического представления.

Моделировать реальные зависимости формулами и графиками. Читать графики реальных зависимостей.

Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий. Строить речевые конструкции с использованием функциональной терминологии.

Использовать компьютерные программы для построения графиков функций, для исследования положения на координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу.

Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости графиков функций вида у = кх, у =кх+b, у=hello_html_38e3e06b.gif, у = ах2, у= ах2 + с, у=ах2+bх+с в зависимости от значений коэффициентов, входящих в формулы.

Строить графики изучаемых функций; описывать их

свойства

12. Числовые последовательности. Арифметическая и геометрическая прогрессии (15 ч)

Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.

Арифметическая и геометрическая прогрессии формулы n-го члена арифметической и геометрической прогрессий, суммы первых л членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты

Применять индексные обозначения, строить речевые высказывания с использованием терминологии, связанной с понятием последовательности.

Вычислять члены последовательностей, заданных формулой n-го члена или рекуррентной формулой. Устанавливать закономерность в построении последовательности, если известны первые несколько ее членов. Изображать члены последовательности точками на координатной плоскости.

Распознавать арифметическую и геометрическую прогрессии при разных способах задания. Выводить на основе доказательных рассуждений формулы общего члена арифметической и геометрической прогрессий, суммы первых n членов арифметической и геометрической прогрессий; решать задачи с использованием этих формул.

Рассматривать примеры из реальной жизни, иллюстрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствующие зависимости графически.

Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием калькулятора)

13. Описательная статистика (10 ч)

Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании

Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным. Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины.

Представлять информацию в виде таблиц, столбчатых и круговых диаграмм, в том числе с помощью компьютерных программ.

Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.), находить среднее арифметическое, размах числовых наборов.

Приводить содержательные примеры использования средних для описания данных (уровень воды в водоеме, спортивные показатели, определение границ климатических зон)

14. Случайные события и вероятность (15 ч)

Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности

Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретировать их результаты. Вычислять частоту случайного события; оценивать вероятность с помощью частоты, полученной опытным путем.

Решать задачи на нахождение вероятностей событий.

Приводить примеры случайных событий, в частности достоверных и невозможных событий, маловероятных событий. Приводить примеры равновероятных событий

15. Элементы комбинаторных задач (10 ч.)

Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал


Выполнять перебор всех возможных вариантов для

пересчета объектов или комбинаций.

Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций (диагонали многоугольника, рукопожатия, число кодов, шифров, паролей и т. п.).

Распознавать задачи на определение числа перестановок и выполнять соответствующие вычисления.

Решать задачи на вычисление вероятности с применением комбинаторики

16. Множества. Элементы логики (5 ч)

Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера - Венна.

Понятия о равносильности, следовании, употребление логических связок если .... то ..., в том и только том случае. Логические связки и, или

Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение множеств. Приводить примеры несложных классификаций.

Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса.

Иллюстрировать математические понятия и утверждения примерами. Использовать примеры и контрпримеры в аргументации.

Конструировать математические предложения с помощью связок если ..., то ..., в том и только том случае, логических связок и, или

Резерв времени -10 ч


ГЕОМЕТРИЯ

7—9 классы (210 ч)

Основное содержание по темам

Характеристика основных видов деятельности ученика (на уровне учебных действий)

1

2

1. Прямые и углы (15 ч)

Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, развернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свойства углов с параллельными и перпендикулярными сторонами. Взаимное расположение прямых на плоскости: параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Метод геометрических мест точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку

Формулировать определения и иллюстрировать понятия отрезка, луча; угла, прямого, острого, тупого и развернутого углов; вертикальных и смежных углов; биссектрисы угла.

Формулировать определения параллельных прямых; углов, образованных при пересечении двух параллельных прямых секущей; перпендикулярных прямых; перпендикуляра и наклонной к прямой; серединного перпендикуляра к отрезку; распознавать и изображать их на чертежах и рисунках.

Объяснять, что такое геометрическое место точек, приводить примеры геометрических мест точек.

Формулировать аксиому параллельных прямых.

Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности перпендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку.

Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения. Сопоставлять полученный результат с условием задачи

2. Треугольники (65 ч)

Треугольники. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.

Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника, теорема о внешнем угле треугольника. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов.

Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжении

Формулировать определения прямоугольного, остроугольного, тупоугольного, равнобедренного, равностороннего треугольников; высоты, медианы, биссектрисы, средней линии треугольника; распознавать и изображать их на чертежах и рисунках.

Формулировать определение равных треугольников. формулировать и доказывать теоремы о признаках равенства треугольников.

Объяснять и иллюстрировать неравенство треугольника.

Формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника, соотношениях между сторонами и углами треугольника, сумме углов треугольника, внешнем угле треугольника, о средней линии треугольника.

Формулировать определение подобных треугольников.

Формулировать и доказывать теоремы о признаках подобия треугольников, теорему Фалеса.

Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольника через его стороны. Формулировать и доказывать теорему Пифагора.

Формулировать определения синуса, косинуса, тангенса, котангенса углов от 0 до 180°. Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов. Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной тригонометрической функции угла вычислять значения других тригонометрических функций этого угла. Формулировать и доказывать теоремы синусов и косинусов.

Формулировать и доказывать теоремы о точках пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений.

Исследовать свойства треугольника с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Опираясь на данные условия задачи, проводить необходимые рассуждения. Интерпретировать полученный результат и сопоставлять его с условием задачи

3. Четырехугольники (20 ч.)

Четырехугольник. Параллелограмм, теоремы о свойствах сторон, углов и диагоналей параллелограмма и его признаки.

Прямоугольник, теорема о равенстве диагоналей прямоугольника.

Ромб, теорема о свойстве диагоналей.

Квадрат.

Трапеция, средняя линия трапеции; равнобедренная трапеция

Формулировать определения параллелограмма, прямоугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции; распознавать и изображать их на чертежах и рисунках.

Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадрата, ромба, трапеции.

Исследовать свойства четырехугольников с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

4. Многоугольники (10 ч)

Многоугольник. Выпуклые многоугольники. Правильные многоугольники. Теорема о сумме углов выпуклого многоугольника. Теорема о сумме внешних углов выпуклого многоугольника

Распознавать многоугольники, формулировать определение и приводить примеры многоугольников.

Формулировать и доказывать теорему о сумме углов выпуклого многоугольника.

Исследовать свойства многоугольников с помощью компьютерных программ.

Решать задачи на доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

5. Окружность и круг (20 ч)

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства.

Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Теоремы о существовании окружности, вписанной в треугольник, и окружности, описанной около треугольника.

Вписанные и описанные окружности правильного многоугольника.

Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник; радиуса окружности, описанной около правильного многоугольника


Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окружностью.

Формулировать и доказывать теоремы о вписанных углах, углах, связанных с окружностью.

Изображать, распознавать и описывать взаимное расположение прямой и окружности.

Изображать и формулировать определения вписанных и описанных многоугольников и треугольников; окружности, вписанной в треугольник, и окружности, описанной около треугольника.

Формулировать и доказывать теоремы о вписанной и описанной окружностях треугольника и многоугольника. Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

6. Геометрические преобразования (10 ч.)

Понятие о равенстве фигур. Понятие движения: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии


Объяснять и иллюстрировать понятия равенства фигур, подобия. Строить равные и симметричные фигуры, выполнять параллельный перенос и поворот.

Исследовать свойства движений с помощью компьютерных программ.

Выполнять проекты по темам геометрических преобразований на плоскости

7. Построение с помощью циркуля и линейки (5 ч.)

Построения с помощью циркуля и линейки


Решать задачи на построение с помощью циркуля и линейки.

Находить условия существования решения, выполнять построение точек, необходимых для построения искомой фигуры. Доказывать, что построенная фигура удовлетворяет условиям задачи (определять число решений задачи при каждом возможном выборе данных)

8. Измерение геометрических величин (25 ч)

Длина отрезка. Длина ломаной. Периметр многоугольника.

Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Длина окружности, число л; длина дуги окружности.

Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставлен-ные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника через две стороны и угол между ними, через периметр и радиус вписанной окружности; формула Герона. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур

Объяснять и иллюстрировать понятие периметра многоугольника.

Формулировать определения расстояния между точками, от точки до прямой, между параллельными прямыми.

Формулировать и объяснять свойства длины, градусной меры угла, площади.

Формулировать соответствие между величиной центрального угла и длиной дуги окружности.

Объяснять и иллюстрировать понятия равновеликих и равносоставленных фигур.

Выводить формулы площадей прямоугольника, параллелограмма, треугольника и трапеции, а также формулу, выражающую площадь треугольника через две стороны и угол между ними, длину окружности, площадь круга.

Находить площадь многоугольника разбиением на треугольники и четырехугольники.

Объяснять и иллюстрировать отношение площадей подобных фигур.

Решать задачи на вычисление линейных величин, градусной меры угла и площадей треугольников, четырехугольников и многоугольников, длины окружности и площади круга. Опираясь на данные условия задачи, находить возможности применения необходимых формул, преобразовывать формулы. Использовать формулы для обоснования доказательных рассуждений в ходе решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

9. Координаты (10 ч)

Декартовы координаты на плоскости. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности

Объяснять и иллюстрировать понятие декартовой системы координат.

Выводить и использовать формулы координат середины отрезка, расстояния между двумя точками плоскости, уравнения прямой и окружности.

Выполнять проекты по темам использования координатного метода при решении задач на вычисления и доказательства

10. Векторы (10 ч)

Вектор. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Угол между векторами. Скалярное произведение векторов

Формулировать определения и иллюстрировать понятия вектора, длины (модуля) вектора, коллинеарных векторов, равных векторов.

Вычислять длину и координаты вектора.

Находить угол между векторами.

Выполнять операции над векторами.

Выполнять проекты по темам использования векторного метода при решении задач на вычисления и доказательства

11. Элементы логики (5 ч)

Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример

Воспроизводить формулировки определений; конструировать несложные определения самостоятельно. Воспроизводить формулировки и доказательства изученных теорем, проводить несложные доказательства самостоятельно, ссылаться в ходе обоснований на определения, теоремы, аксиомы

Резерв времени -15 ч



























Оснащение учебного процесса

Оснащение процесса обучения математике обеспечивается библиотечным фондом, печатными пособиями, а также информационно-коммуникативными средствами, экранно-звуковыми пособиями, техническими средствами обучения, учебно-практическим и учебно-лабораторным оборудованием.

В библиотечный фонд входят Стандарт по математике, примерные программы, авторские программы, комплекты учебников, рекомендованных или допущенных Министерством образования и науки Российской Федерации. В состав библиотечного фонда целесообразно включать рабочие тетради, дидактические материалы, сборники контрольных и самостоятельных работ, практикумы по решению задач, соответствующие используемым комплектам учебников; сборники заданий, обеспечивающих диагностику и контроль качества обучения в соответствии с требованиями к уровню подготовки выпускников, закрепленными в Стандарте по математике; учебную литературу, необходимую для подготовки докладов, сообщений, рефератов, творческих работ.

В комплект печатных пособий целесообразно включить таблицы по математике, в которых должны быть представлены правила действий с числами, таблицы метрических мер, основные сведения о плоских и пространственных геометрических фигурах, основные математические формулы, соотношения, законы, графики функций.

Целесообразно иметь в наличии информационные средства обучения — мультимедийные обучающие программы и электронные учебные издания, ориентированные на систему дистанционного обучения либо имеющие проблемно-тематический характер и обеспечивающие дополнительные условия для изучения отдельных тем и разделов Стандарта. Эти пособия должны предоставлять техническую возможность построения системы текущего и итогового контроля уровня подготовки учащихся (в том числе в форме тестового контроля). Инструментальная среда должна предоставлять возможность построения и исследования геометрических чертежей, графиков функций, проведения числовых и вероятностно-статистических экспериментов.

Минимальный набор учебного оборудования включает:

1. Библиотечный фонд

1.1. Нормативные документы: Примерная программа основного общего образования по математике, Планируемые результаты освоения программы основного общего образования по математике.

1.2. Авторские программы ПО курсам математики.

1.3. Учебники: по математике для 5—6 классов, по алгебре для 7—9 классов, по геометрии для 7—9 классов.

1.4. Учебные пособия: рабочие тетради, дидактические материалы, сборники контрольных работ.

1.5. Пособия для подготовки и/или проведения государственной аттестации по математике за курс основной школы.

1.6. Учебные пособия по элективным курсам.

1.7. Научная, научно-популярная, историческая литература.

1.8. Справочные пособия (энциклопедии, словари, справочники по математике и т.п.).

1.9. Методические пособия для учителя.

2. Печатные пособия

2.1. Таблицы по математике для 5—6 классов, по алгебре для 7-9 классов, по геометрии для 7-9 классов.

2.2. Портреты выдающихся деятелей математики.

3. Информационные средства

3.1. Мультимедийные обучающие программы и электронные учебные издания по основным разделам курса математики.

3.2. Электронная база данных для создания тематических и итоговых разноуровневых тренировочных и проверочных материалов для организации фронтальной и индивидуальной работы.

3.3. Инструментальная среда по математике.

4. Экранно-звуковые пособия:

Видеофильмы по истории развития математики, математических идей и методов.

5. Технические средства обучения

5.1. Мультимедийный компьютер.

5.2. Мультимедиапроектор.

5.3. Экран (на штативе или навесной).

5.4. Интерактивная доска.

6. Учебно-практическое и учебно-лабораторное оборудование

6.1. Доска магнитная с координатной сеткой.

6.2. Комплект чертежных инструментов (классных и раздаточных): линейка, транспортир, угольник (30°, 60°, 90°), угольник (45°, 90°), циркуль.

6.3. Комплекты планиметрических и стереометрических тел (демонстрационных и раздаточных).

6.4. Комплект для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин).


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 07.11.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров185
Номер материала ДВ-130814
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх