Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Статьи / "Разработка рабочих программ по математике"

"Разработка рабочих программ по математике"

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy


СВИДЕТЕЛЬСТВО СРАЗУ ПОСЛЕ ПРОСМОТРА ВЕБИНАРА

Вебинар «Подростковая лень: причины, способы борьбы»

Просмотр и заказ свидетельств доступен только до 22 января! На свидетельстве будет указано 2 академических часа и данные о наличии образовательной лицензии у организатора, что поможет Вам качественно пополнить собственное портфолио для аттестации.

Получить свидетельство за вебинар - https://infourok.ru/webinar/65.html

  • Математика

Поделитесь материалом с коллегами:

Пояснительная записка


Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.

Рабочая программа выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.


Структура документа

Рабочая программа включает следующие разделы: пояснительная записка, содержание программы учебного курса, требования к уровню подготовки учащихся, учебно – тематический план, поурочное планирование, учебное и учебно-методическое обеспечение обучения для учащихся и учителя, контрольные работы.

Содержание программы учебного курса, требования к уровню подготовки учащихся и выпускников, обязательный минимум содержания представлены в виде таблицы.

Задачи учебного предмета

При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:

  • систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

  • расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

  • развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;

  • знакомство с основными идеями и методами математического анализа.


Цели.

Изучение алгебры в 10 классе направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.


Общеучебные умения, навыки и способы деятельности

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

  • построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

  • выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

  • самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

  • проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

  • самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.


Место предмета

В соответствии с учебным планом школы в 10 классе отводится 3 часа в неделю для обязательного изучения алгебры. В рабочей программе предусмотрен резерв свободного учебного времени в объеме 3 часов.

Результаты обучения

Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достичь все учащиеся, оканчивающие 10 класс, и достижение которых является обязательным условием положительной аттестации ученика за курс среднего (полного) общего образования.


Организация образовательного процесса

Основная форма организации образовательного процесса – классно-урочная система.

Предусматривается применение следующих технологий обучения:

  1. традиционная классно-урочная

  2. игровые технологии

  3. элементы проблемного обучения

  4. технологии уровневой дифференциации

  5. здоровье сберегающие технологии

  6. ИКТ


Преобладающие формы организации учебной работы учащихся: фронтальная, индивидуальная, реже групповая. Текущий контроль осуществляется с помощью опросов, компьютерных тестов, самостоятельных и контрольных работ.

Учебное и учебно-методическое обеспечение



  1. Программа для общеобразовательных школ, гимназий, лицеев:

Сборник “Программы для общеобразовательных школ, гимназий, лицеев: Математика. 5-11 кл.”/ Сост. Г.М.Кузнецова, Н.Г. Миндюк. М. Дрофа, 2004г.

  1. Программа общеобразовательных учреждений. Алгебра и начала математического анализа. 10-11 классы. Сост. Бурмистрова Т.А. М: «Просвещение», 2010 г

  2. Алимов А.Ш, Колягин Ю.М. и др. Алгебра и начала математического анализа. 10-11 классы. Учебник. (базовый уровень). М.: Просвещение, 2012

  3. Шабунин М.И. и др. Алгебра и начала математического анализа. Дидактические материалы. 10 класс. (Базовый уровень) М.: Просвещение, 2010

  4. Большакова О.В.Алгебра и начала анализа. 10 класс. Тематические тестовые задания для подготовки ЕГЭ. Ярославль: Академия развития, 2011

  5. Ященко И.В. и др. ЕГЭ. Математика. Тематическая рабочая тетрадь + 20 вариантов тестов ЕГЭ. М.: МЦНМО, 2013

  6. Большакова О.В. Готовимся к ЕГЭ. Алгебра и начала анализа. 10 класс. Итоговое тестирование в формате экзамена. Ярославль: Академия развития, 2011

  7. Семенко Е.А. Тематический сборник заданий для подготовки к ЕГЭ по математике: 10-11 классы. М.: Вентана-Граф, 2012.

  8. Математика. 10-й класс. Тесты для промежуточной аттестации и текущего контроля. Под ред. Лысенко Ф.Ф., Кулабухова С.Ю. Ростов-на-Дону: Легион-М, 2011

  9. ЕГЭ 2013. Математика. Рабочие тетради: В1 – В14. Под ред. Семенова А.Л., Ященко И.В. М.: МЦНМО, 2013


Интернет – ресурсы


  1. http://www.ed.gov.ru ; http://www.edu.ru –Министерство образования РФ.

  2. http://www.kokch.kts.ru/cdo - Тестирование online: 5 – 11 классы.

  3. http://www.rusedu.ru – Архив учебных программ информационного образовательного портала.

  4. http://mega.km.ru – Мегаэнциклопедия Кирилла и Мефодия.

  5. http://www.egesha.ru , http://www.egeru.ru - Готовимся к ЕГЭ - Онлайн тесты ЕГЭ


1. Уметь применять свойства арифметического квадратного корня для вычислений и несложных преобразований.

2. Овладеть понятием действительного и иррационального числа.

3. Внесение и вынесение радикалов под корень и из под корня.


1. Выполнять преобразование числовых и буквенных выражений, содержащих корень, применяя свойства корней, приведение подобных радикалов.

2. Исключать иррациональность в знаменателе дроби.

3. Преобразовывать рациональные выражения.

4. При преобразованиях использовать формулы, содержащие радикалы и степени.

Уметь находить допустимые значения выражений, содержащих корень n – й степени.



1. Уметь избавляться от иррациональности в знаменателе дроби, умножением числителя и знаменателя на сопряжённое число.

2. Преобразовывать выражения, содержащие знак модуля.

Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число e

Логарифмы. Свойства логарифмов. Десятичный и натуральный логарифмы.

1. Вычислять в несложных частных случаях значения логарифма на основе определения и основного логарифмического тождества.

2. Уметь выполнять несложные преобразования, применяя свойства логарифмов.



1. Уметь вычислять значения выражений вида logalogbA и т. п.

2. Овладеть техникой применения свойств логарифмов в ходе выполнения тождественных преобразований.


1. Выполнять преобразования логарифмических выражений в комбинации с другими выражениями.

2. Находить область допустимых значений loga f(x)

1. Выполнять преобразования логарифмических выражений в комбинации с другими выражениями.

2. Уметь логарифмировать и потенцировать.

Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс, котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Преобразование простейших тригонометрических выражений.

Радианная мера угла. Определение синуса, косинуса, тангенса угла. Знаки синуса, косинуса и тангенса угла. Зависимость между синусом, косинусом и тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов и

-. Формулы приведения. Формулы сложения. Синус, косинус и тангенс двойного и половинного углов. Синус, косинус и тангенс суммы и разности двух углов.

1. Уметь находить в несложных случаях значения тригонометрических выражений.

2. Применять формулы приведения.

3. Овладеть умениями вычислять по известным значениям одной функции значения остальных.


1. Овладеть понятием котангенса произвольного угла.

2. Знать формулы синуса, косинуса и тангенса двойного и половинного угла, понижение степени, и уметь ими пользоваться при преобразовании выражений.


Доказывать тригонометрические тождества, используя все тригонометрические формулы.

1. Преобразовывать сумму тригонометрических функций в произведение и наоборот.

2. Уметь выражать все тригонометрические функции через тангенс половинного угла.

3. Уметь пользоваться формулами приведения.

Уравнения и неравенства

Показательные уравнения. Показательные неравенства.

Показательные уравнения. Показательные неравенства. Системы показательных уравнений и неравенств.

1. Решать простейшие показательные уравнения и неравенства способом приведения к одному основанию, разложением на множители.

2. Решать системы уравнений способом подстановки.


1. Овладеть техникой решения показательных уравнений и неравенств.

2. Применять геометрические представления для решения уравнений и неравенств.

3. Решать показательные уравнения и неравенства заменой переменной.

4. Решать однородные показательные уравнения I и II степени.

Решение более сложных показательные уравнения и неравенства.

Освоить общие методы решения показательных уравнений и неравенств, содержащих модули и параметры.

Решение иррациональных уравнений.

Иррациональные уравнения.

Иррациональные неравенства.


Овладеть техникой решения иррациональных уравнений, неравенств и их систем.

Решать иррациональные уравнения и неравенства.

Решать иррациональные уравнения и неравенства, их системы.

Логарифмические уравнения и неравенства.

Логарифмические уравнения.

Логарифмические неравенства.

1. Овладеть понятием следствия и равносильности уравнений.

2. Решать простейшие логарифмические уравнения и неравенства, применяя свойства логарифма.

3. Решать логарифмические уравнения и неравенства, сводящиеся к квадратным.

1. Освоить общие приёмы решения логарифмических уравнений и неравенств: разложением на множители, подстановки, замены переменной, применяя функции к обеим частям, тождественным преобразованиям обеих частей.

2. Применять геометрические представления для исследования логарифмических неравенств.

Решать логарифмические уравнения и неравенства, применяя нестандартные приёмы.

Усвоить общую схему решения уравнений и неравенств, содержащих модуль, параметр.


Тригонометрические уравнения:

cosx = a, sinx = a, tgx = a.

Тригонометрические уравнения:

cosx = a, sinx = a,

tgx = a, ctgx = a.

1. Освоить понятия – arccos a, arcsin a, arctg a.

2. Уметь решать тригонометрические уравнения, используя формулы:

x = ± arccos a + 2n,

x = (-1)n arcsin a + n

x = arctg a + n,

n € Z


1. Освоить понятие arcctg a.

2. Решать тригонометрические уравнения разложением левой части на множители и используя формулы тригонометрических преобразований.

3. Решать однородные тригонометрические уравнения.

4. Применять геометрическое представление для решения тригонометрических уравнений.

Решать тригонометрические уравнения любым методом.

1. Применять нестандартные приёмы к решению тригонометрических уравнений.

2. Решать тригонометрические уравнения, содержащие модуль, параметр.

3. Решать тригонометрические уравнения с выбором корней.

Функции.

Степенная, логарифмическая и показательная функции; их свойства и графики.

Степенная функция, её свойства и график.

Чётность функций.


Логарифмическая функция, её свойства и график.


Показательная функция, её свойства и график.

1. Понимать содержательный смысл важнейших свойств перечисленных функций.

2. Изображать схематически графики функций.

3. Уметь находить значение функций, заданные формулой, таблицей, графиком и определять значение аргумента по значению функции.

4. Опираясь на график уметь использовать свойства функции для сравнения чисел.

5. Указывать по графику: область определения, множество значений и промежутки возрастания и убывания.

1. Строить графики функций и владеть приёмами их преобразований.


2. Уметь аналитически доказывать возрастание или убывание функции на промежутке.


1. Уметь аналитически доказывать чётность, нечётность функций.


2. Строить графики функций и описывать их свойства.

1. Построение графиков функций, содержащих модуль.


2. Уметь строить графики функций с дробным показателем и функции, содержащие знак модуля.


3. Решать графически системы уравнений, содержащих вышеперечисленные функции.

4. Решать графически уравнения и неравенства.

Учебно – тематический план


раздела/

темы

Наименование разделов и тем

Всего часов

В том числе, час.

Теория

Контроль

1

Повторение курса 9 класса

4

3

1

2

Действительные числа

12

11

1

3

Степенная функция

14

13

1

4

Показательная функция

14

13

1

5

Логарифмическая функция

16

15

1

6

Тригонометрические формулы

23

22

1

7

Тригонометрические уравнения

13

12

1

8

Итоговое повторение

6

4

2

Всего за год

102

93

9















Элементы

содержания

Требования к уровню

подготовки учащихся

Формы и способы контроля

ИКТ

Домашнее задание

Дата


Примечание

Повторение курса 9 класса (4 часа)

По плану

Фактически


1

Числовые выражения

Урок обобщения и систематизации знаний

Целые и рациональные выражения; все арифметические действия с дробями; формулы сокращенного умножения.

Знать: формулы сокращенного умножения.

Уметь: сокращать дроби и выполнять все действия с дробями; вести диалог, аргументированно отвечать на поставленные вопросы

Теоретический опрос с последующим обсуждением

ответов

Презентация «Обобщаем и систематизируем курс алгебры 9»

Индивидуальные задания




2

Буквенные выражения

Учебный практикум

Многочлены, целые, рациональные и иррациональные выражения; все арифметические действия с дробями; формулы сокращенного умножения.

Знать: действия над многочленами, с алгебраическими дробями и с иррациональными выражениями.

Уметь: выполнять действия над многочленами, с алгебраическими дробями и с иррациональными выражениями; подбирать аргументы, соответствующие решению, работать по заданному алгоритму, сопоставлять.

Решение

проблемных

задач

Презентация «Обобщаем и систематизируем курс алгебры 9»

Индивидуальные задания




3

Уравнения

Учебный практикум

Целые, рациональные, квадратные и простейшие иррациональные уравнения; различные методы решения уравнений.

Знать: решения целых алгебраических уравнений, дробно-рациональных уравнении и иррациональных уравнений.


Решение

проблемных

задач

Презентация «Обобщаем и систематизируем курс алгебры 9»

Индивидуальные задания








Уметь: решать целые алгебраические

уравнения, дробно-рациональные уравнения и иррациональные уравнения.







4

Входная диагностическая работа

Урок контроля ЗУН учащихся

Выявление знаний и умений учащихся, степени усвоения ими материала

Уметь: решать основные типы задач курса алгебры за 9 класс

Индивидуальное решение

контрольных заданий


Создание

базы тестовых заданий

по теме




Действительные числа (12 часов)




Основные цели:

  • формирование представлений о натуральных, целых числах, о признаках делимости, о простых и составных числах, о рациональных числах,

о периоде, о периодической дроби, о действительных числах, об иррациональных числах, о бесконечной десятичной периодической дроби, о модуле действительного числа;

  • формирование умений определять бесконечно убывающую геометрическую прогрессию, вычислять по формуле сумму бесконечно убывающей геометрической прогрессии;

  • овладение умением извлечения корня п-й степени и применения свойств арифметического корня натуральной степени;

  • овладение навыками решения иррациональных уравнений, используя различные методы решения иррациональных уравнений и свойств степени с любым целочисленным показателем.




5

Целые и рациональные числа

Урок изучения нового материала

Натуральные, целые числа, признаки делимости, простые и составные числа, теорема о делении с остатком, основная теорема арифметики, рациональное число, период, периодическая дробь, чисто- периодическая, смешанно-периодическая.

Знать: как можно представить бесконечную периодическую десятичную дробь в виде обыкновенной дроби.

Уметь: представлять бесконечную периодическую десятичную дробь в виде обыкновенной дроби; выполнять действия с десятичными и обыкновенными дробями


Фронтальный опрос


§ 1 №1(2,4,6); 2(2,4,6); 5(2)




6

Решение задач по теме «целые и рациональные числа»

Урок закрепления изученного материала

Самостоятельная работа


Индивидуальные задания




7

Действительные числа

Комбинированный урок

Действительные числа, числовая прямая, иррациональные числа, бесконечная десятичная периодическая дробь, модуль действительного числа.

Знать, как установить, какая из пар чисел образует десятичные приближения для заданного числа.

Уметь: выполнять приближенные вычисления корней. Объяснять изученные положения на самостоятельно подобранных конкретных примерах.

Решение

упражнений.

Составление

опорного

конспекта,

ответы

на вопросы


§ 2

9(2,4,6); 11(2)





8

Бесконечно убывающая геометрическая прогрессия

Комбинированный урок

Геометрическая прогрессия, бесконечно убывающая геометрическая прогрессия, знаменатель геометрической прогрессии, формула суммы бесконечно убывающей геометрической прогрессии.

Уметь: доказать, что заданная геометрическая прогрессия бесконечно убывающая, находить сумму бесконечно убывающей геометрической прогрессии.

Математический диктант

Презентация

«Действительные

числа»

§ 3

16(2); 17(2); 21(2,4)




9

Решение задач по теме «бесконечно убывающая геометрическая прогрессия»

Урок закрепления изученного материала

Фронтальный опрос


§ 3

22(2); 23(2)





10

Арифметический корень натуральной степени

Комбинированный урок

Арифметический корень натуральной степени, подкоренное выражение, квадратный корень, кубический корень, извлечение корня п-й степени, свойства арифметического корня натуральной степени

Знать: определение корня и-й степени, его свойства.

Уметь: выполнять преобразования выражений, содержащих радикалы решать простейшие уравнения, содержащие корни и-й степени

Составление опорного конспекта, ответы на вопросы


§ 4

32(2,4,6); 42(2,4)

43(2,4)




11

Решение задач по теме «арифметический корень натуральной степени»

Учебный практикум

Математический диктант.


§ 4

38(4); 41(2); 49(2); 50




12

Степень с рациональным показателем

Комбинированный урок

Степень с любым целочисленным показателем, свойства степени, иррациональные уравнения, методы решения иррациональных уравнений

Знать, как находить значения степени с рациональным показателем.

Уметь: проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени.

Составление опорного конспекта, ответы на вопросы


§ 5

69(2,4); 70(2,4); 71(2,4)

79




13

Решение задач по теме «степень с рациональным показателем»

Исследовательский

Самостоятельная работа


§ 5

96(2,4); 103(2,4)

110




14

Решение задач по теме «действительные числа»

Урок повторения и обобщения

Систематизация теории и отработка навыков решения задач по теме. Подготовка к контрольной работе.

Уметь: обобщать и систематизировать знаний по основным темам раздела «Действительные числа». Решать ключевые задачи темы.

Проверка домашнего задания, самостоятельное решение задач


§ 1 – 5

86 (2,4); 76(2,4)

109




15

Контрольная работа по теме «действительные числа»

Урок контроля знаний и умений учащихся

Проверка знаний, умений и навыков по теме.

Уметь: применять полученные знания и умения при решении задач

Индивидуальное решение контрольных заданий


Повторить

§ 1 – 5





16

Анализ контрольной работы. Работа над ошибками.

Урок коррекции знаний и умений

Анализ ошибок, допущенных в контрольной работе, устранение пробелов в знаниях.

Уметь: выполнять работу над ошибками, допущенными в контрольной работе

Работа над ошибками. Самостоятельное решение задач


Индивидуальные задания




Степенная функция (14 часов)




Основные цели:

  • формирование представлений о степенной функции, о монотонной функции, об обратимой функции, об обратной функции, о взаимно обратных функциях;

  • формирование умений преобразования данного уравнения в уравнение-следствие, расширения области определения, проверки корней;

  • овладение умением решать иррациональные уравнения методом возведения в квадрат обеих частей уравнения, проверки корней уравнения; выполнять равносильные преобразования уравнения и определять неравносильные преобразования уравнения;

  • овладение навыками решения иррациональных неравенств, проверки равносильности неравенств.




17

Степенная функция, ее свойства и график

Поисковый

Степенная функция, показатель «четное натуральное число», показатель «нечетное натуральное число», показатель «положительное действительное число», показатель «отрицательное действительное число».

Знать, как строить графики степенных функций при различных значениях показателя. Уметь: описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения.

Построение алгоритма решения задания


§ 6

119(2,4,6); 124





18

Свойства степенной функции

Исследовательский

Свойства и графики различных случаев степенной функции

Уметь: описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения.

Проблемные задания, ответы на вопросы


§ 6

125(2,4,6); 175(2,4,6)




19

Решение задач по теме «степенная функция»

Учебный практикум

Уметь: сравнивать числа, решать неравенства с помощью графиков и (или) свойств степенной функции.

Самостоятельная работа


Индивидуальные задания




20

Взаимно обратные функции

Урок изучения нового материала

Монотонные функции, обратимые функции, обратная функция, взаимно обратные функции.

Знать: как можно определить взаимно-обратные функции; свойство монотонности и симметричности обратимых функций.

Уметь: строить график функции, обратной данной

Математический диктант

Презентация «Степень с рациональным показателем»

§ 7

132(2,4,6); 133(2,4)





21

Равносильные уравнения и неравенства

Урок изучения нового материала

Равносильность уравнений и неравенств, следствие уравнений и неравенств, преобразование данного уравнения в уравнение-следствие, расширение области определения, проверка корней, потеря корней, общие методы решения уравнений и неравенств.

Знать: определение равносильных уравнений, следствия уравнения; при каких преобразованиях исходное уравнение заменяется на равносильное ему уравнение, при каких получаются посторонние корни, при каких происходит потеря корней; определение равносильных неравенств.

Уметь: устанавливать равносильность и следствие; выполнять необходимые преобразования при решении уравнений и неравенств

Работа в парах


§ 8

138(2,3); 139(2,4,6)






22

Решение уравнений и неравенств

Учебный практикум

Уметь: решать простейшие уравнения и неравенства с одной переменной

Компьютерный тест


§ 8

140(2,4); 143(2,4)




23

Иррациональные уравнения

Урок изучения нового материала

Иррациональные уравнения, метод возведения в квадрат обеих частей уравнения, посторонние корни, проверка корней уравнения, равносильность уравнений, равносильные преобразования уравнения, неравносильные преобразования уравнения.

Знать: определение иррационального уравнения; свойство.

Уметь: решать рациональные уравнения и составлять математические модели реальных ситуаций.

Проблемные задания, ответы на вопросы


§ 9

152(2); 153(2);

155(2,4)




24

Решение иррациональных уравнений

Учебный практикум

Проверка домашнего задания, самостоятельное решение задач

Презентация

§ 9

156(2,4); 157






25

Решение иррациональных уравнений

Учебный практикум

Самостоятельная работа


Индивидуальные задания




26

Иррациональные неравенства

Урок изучения нового материала

Иррациональные неравенства, метод возведения в квадрат обеих частей неравенства, равносильность неравенства, равносильные преобразования неравенства, неравносильные преобразования неравенства.

Знать: об иррациональных неравенствах, о методе решения неравенства, о равносильности неравенств, о равносильных преобразованиях неравенств, о неравносильных преобразованиях неравенств.

Уметь: решать иррациональные уравнения и проверять корни на наличие посторонних.

Составление опорного конспекта, ответы на вопросы


§ 10

167 (2,4,6)

168 (2,4)




27

Решение иррациональных неравенств

Учебный практикум

Проверка домашнего задания, самостоятельное решение задач


§ 10

170 (2,4)





28

Решение задач по теме «степенная функция»

Урок повторения и обобщения

Систематизация теории и отработка навыков решения задач по теме. Подготовка к контрольной работе.

Уметь: обобщать и систематизировать знаний по основным темам раздела «Степенная функция». Решать ключевые задачи темы.

Самостоятельное решение задач

Презентация

Стр 70

Проверь себя!




29

Контрольная работа по теме «степенная функция»

Урок контроля знаний и умений учащихся

Проверка знаний, умений и навыков по теме.

Уметь: применять полученные знания и умения при решении задач

Индивидуальное решение контрольных заданий


Повторить

§ 6 - 10




30

Анализ контрольной работы. Работа над ошибками.

Урок коррекции знаний и умений

Анализ ошибок, допущенных в контрольной работе, устранение пробелов в знаниях.

Уметь: выполнять работу над ошибками, допущенными в контрольной работе

Работа над ошибками. Самостоятельное решение задач


Индивидуальные задания




ПОКАЗАТЕЛЬНАЯ ФУНКЦИЯ (14 часов)




Основные цели:

  • формирование понятий о показательной функции, о степени с произвольным действительным показателем, о свойстве показательной функции, о графике функции, о симметрии относительно оси ординат;

  • формирование умения решать показательное уравнение различными методами: функционально-графическим, уравнивания показателей, введения новой переменной;




  • овладение умением решать показательные неравенства различными методами, используя равносильные неравенства;

  • овладение навыками решения системы показательных уравнений и неравенств методом замены переменных, методом умножения уравнений, методом подстановки.




31

Показательная функция, ее свойства и график

Урок изучения нового материала

Показательная функция, степень с произвольным действительным показателем, свойства показательной функции, график функции, симметрия относительно оси ординат.

Знать: определение показательной функции, ее свойства и график.

Уметь: определять значение функции по значению аргумента при различных способах задания функции; строить график функции;

Фронтальный опрос

Презентация

§ 11

194(2,4); 196;





32

Решение задач по теме «показательная функция»

Учебный практикум

Уметь: использовать график показательной функции для решения уравнений и неравенств графическим методом.

Проверка домашнего задания, самостоятельная работа


§ 11

197(2,4); 206




33

Показательные уравнения

Комбинированный

Показательное уравнение, функционально- графический метод, метод уравнивания показателей, метод введения новой переменной.

Знать: определение и вид показательных уравнений, алгоритм решения показательных уравнений.

Уметь: решать простейшие показательные уравнения, их системы; использовать для приближенного решения уравнений графический метод.

Составление опорного конспекта, ответы на вопросы


§ 12

209(2,4); 250(2,4)





34

Решение показательных уравнений

Учебный практикум

Компьютерный тест

Тестовая программа

§ 12

211(2,4); 214(2,4)




35

Решение показательных уравнений способом подстановки

Учебный практикум

Самостоятельная работа


§ 12

213(2,4); 252(2,4)




36

Показательные неравенства

Комбинированный

Показательные неравенства, методы решения показательных неравенств, равносильные неравенства.

Знать: определение и вид показательных неравенств, алгоритм решения показательных уравнений.

Уметь: решать простейшие показательные неравенства, их системы; использовать для приближенного решения неравенств графический метод

Взаимопроверка в парах, работа с текстом



§ 13

228(4,6); 229(2,4)





37

Решение показательных неравенств

Учебный практикум

Компьютерный тест

Тестовая программа

§ 13

231 (2, 4)

232 (2)





38

Решение показательных неравенств графическим методом

Учебный практикум

Самостоятельная работа. Проверка домашнего задания


§ 13

230 (2, 4)

236 (2, 4)




39

Системы показательных уравнений и неравенств


Системы показательных уравнений и неравенств, метод замены переменных, метод умножения уравнений, способ подстановки

Знать: как решать системы показательных уравнений.

Уметь: решать систему показательных уравнений методом постановки, методом умножения уравнений и заменой переменных.

Фронтальный опрос.

Работа в парах.


§ 14

240(2); 241(2)




40

Решение систем показательных уравнений

Учебный практикум

Компьютерный тест

Тестовая программа

242(2); 243(2,4,6)




41

Решение систем показательных неравенств

Учебный практикум

Проверка домашнего задания. Самостоятельная работа.


§ 14

Индивидуальные задания




42

Решение задач по теме «показательная функция»

Урок повторения и обобщения

Систематизация теории и отработка навыков решения задач по теме. Подготовка к контрольной работе.

Уметь: обобщать и систематизировать знаний по основным темам раздела «Показательная функция». Решать ключевые задачи темы.

Самостоятельное решение задач


Стр 88

Проверь себя!




43

Полугодовая контрольная работа

Урок контроля знаний и умений учащихся

Проверка знаний, умений и навыков по теме.

Уметь: применять полученные знания и умения при решении задач

Индивидуальное решение контрольных заданий


§ 11 - 14




44

Анализ контрольной работы. Работа над ошибками.

Урок коррекции знаний и умений

Анализ ошибок, допущенных в контрольной работе, устранение пробелов в знаниях.

Уметь: выполнять работу над ошибками, допущенными в контрольной работе

Работа над ошибками. Самостоятельное решение задач








Индивидуальные задания




ЛОГАРИФМИЧЕСКАЯ ФУНКЦИЯ (16 часов)




Основные цели:

  • формирование представлений о логарифме, об основании логарифма, о логарифмировании, о десятичном логарифме, о натуральном логарифме, о формуле перехода от логарифма по одному основанию к логарифму по другому основанию;

  • формирование умения применять свойства логарифмов: логарифм произведения, логарифм частного, логарифм степени, при упрощении выражений, содержащих логарифм;

  • овладение умением решать логарифмическое уравнение, переходя к равносильному логарифмическому уравнению, применяя функционально- графический метод, метод потенцирования, метод введения новой переменной, метод логарифмирования;

  • овладение навыками решения логарифмического неравенства.




45

Логарифмы

Комбинированный

Логарифм, основание логарифма, иррациональное число логарифмирование, десятичный логарифм.

Знать: определение логарифма числа, основное логарифмическое тождество.

Уметь: устанавливать связь между степенью и логарифмом и понимать их взаимно противоположное значение; вычислять логарифм числа по определению, решать простейшие логарифмические уравнения

Фронтальный опрос.

Работа в парах.


§ 15

271(2,4,6); 272(2,4)




46

Решение задач по теме «логарифмы»

Учебный практикум

Компьютерный тест

Проверка домашнего задания.

Тестовая программа

§ 15

278(2,4); 282(2);

284(4)




47

Свойства логарифмов

Комбинированный

Свойства логарифмов, логарифм произведения, логарифм частного, логарифм степени, логарифмирование.

Знать: свойства логарифмов. Уметь: выполнять арифметические действия, сочетая устные и письменные приемы; находить значения логарифма; проводить по известным формулам и правилам преобразования буквенных выражений, включающих логарифмы

Взаимопроверка в парах, работа с текстом


§ 16

291(2,4); 296(2,4)




48

Применение свойств логарифмов

Учебный практикум

Самостоятельная работа


§ 16

292(2; 4); 293(2; 4)




49

Десятичные и натуральные логарифмы

Комбинированный

Таблица логарифмов, десятичный логарифм, натуральный логарифм, формула перехода от логарифма по одному основанию к логарифму по другому основанию.

Знать: обозначение десятичного и натурального логарифма.

Уметь: выражать данный логарифм через десятичный и натуральный и вычислять на микрокалькуляторе с различной точностью.

Составление

опорного

конспекта,

ответы

на вопросы


§ 17

301(2,4); 303(2,4)




50

Решение задач по теме «десятичные и натуральные логарифмы»

Учебный практикум

Фронтальный опрос.

Работа в парах.

Проверка домашнего задания.


§ 17

306(2); 307(4,6)




51

Логарифмическая функция, ее свойства и график

Урок изучения нового материала

Функция у = loga х, логарифмическая кривая,

свойства логарифмической функции, график функции.

Знать: как применить определение логарифмической функции, ее свойства в зависимости от основания.

Уметь: определять значение функции по значению аргумента при различных способах задания функции; строить график логарифмической функции с данным основанием, использовать свойства логарифмической функции при решении задач.

Составление

опорного

конспекта,

ответы

на вопросы

Презентация

§ 18

318(2,4); 324(2,4)





52

Решение задач по теме «логарифмическая функция»

Учебный практикум

Самостоятельная работа


§ 18

320(4); 325(2,4)




53

Логарифмические уравнения

Комбинированный

Логарифмическое уравнение, потенцирование,

равносильные логарифмические уравнения, функционально-графический метод, метод потенцирования, метод введения новой переменной, метод логарифмирования.

Знать: основные методы решения логарифмических уравнений.

Уметь: решать простейшие логарифмические уравнения, их системы; использовать метод введения новой переменной для сведения уравнения к рациональному виду; использовать для приближённого решения уравнений графический метод; изображать на координатной плоскости множество решений уравнений и систем.

Построение алгоритма действия, решение задач.


§ 19

337(2,4); 338(2,4)




54

Решение логарифмических уравнений

Учебный практикум

Компьютерный тест

Тестовая программа

§ 19

339(2); 341(2,4)




55

Решение логарифмических уравнений

Учебный практикум

Самостоятельная работа

Проверка домашнего задания.


§ 19

342(2); 378




56

Логарифмические неравенства

Комбинированный

Логарифмическое неравенство, равносильные логарифмические неравенства, методы решения логарифмических неравенств.

Знать: алгоритм решения логарифмического неравенства в зависимости от основания. Уметь: решать простейшие логарифмические неравенства, применяя метод замены переменных для сведения логарифмического неравенства к рациональному виду

Фронтальный опрос, решение задач


§ 20

355 (2,4,6); 356(4)




57

Решение логарифмических неравенств

Учебный практикум

Компьютерный тест

Тестовая программа

§ 20

357(2); 359(2,4)




58

Решение логарифмических неравенств

Проблемный

Самостоятельная работа



§ 20

363(2); 364(2)




59

Решение задач по теме «логарифмическая функция»

Урок повторения и обобщения

Систематизация теории и отработка навыков решения задач по теме. Подготовка к контрольной работе.

Уметь: обобщать и систематизировать знаний по основным темам раздела «Логарифмическая функция». Решать ключевые задачи темы.

Самостоятельное решение задач


Индивидуальные задания




60

Контрольная работа по теме «логарифмическая функция»

Урок контроля знаний и умений учащихся

Проверка знаний, умений и навыков по теме.

Уметь: применять полученные знания и умения при решении задач

Индивидуальное решение контрольных заданий


Работа над ошибками




ТРИГОНОМЕТРИЧЕСКИЕ ФОРМУЛЫ (23 ЧАСА)




Основные цели:

  • формирование представлений о радианной мере угла, о переводе радианной меры в градусную и градусной меры в радианную, о числовой окружности на координатной плоскости, о синусе, косинусе, тангенсе, котангенсе и их свойствах, о четвертях окружности;

  • формирование умений упрощения тригонометрических соотношений одного аргумента, доказательства тождеств; преобразования выражений посредством тождеств;

  • овладение умением применения для упрощения выражений формул: синуса и косинуса суммы и разности аргумента, двойного, кратного и половинного угла, понижения степени;

  • овладение навыками использования формул приведения и формул преобразования суммы тригонометрических функций в произведение.




61

Радианная мера угла

Исследовательский

Радианная мера угла, градусная мера угла, перевод радианной меры в градусную, перевод градусной меры в радианную.

Знать: определение угла в один радиан, формулы перевода градусной меры в радианную и наоборот.

Уметь: выражать радианную меру угла в градусах и наоборот.

Проблемные задания, ответы на вопросы


§ 21

407(2,4,6); 408(2,4,6)





62

Поворот точки вокруг начала координат

Комбинированный

Система координат, числовая окружность на координатной плоскости, координаты точки окружности.

Знать: как определить координаты точек числовой окружности. Уметь: составить таблицу для точек числовой окружности и их координат; по координатам находить точку числовой окружности.

Тренажёр


§ 22

416(2,4,6); 420(2)

421(2); 422(3)




63

Определение синуса, косинуса и тангенса угла

Проблемный

Синус, косинус, тангенс, котангенс и их свойства, первая, вторая, третья и четвертая четверти окружности.

Знать: определение синус, косинус, тангенс, котангенс произвольного угла; радианную меру угла.

Уметь: вычислять синус, косинус, тангенс и котангенс числа; выводить некоторые свойства синуса, косинуса, тангенса.

Проблемные задачи, построение алгоритма действия, решение упражнений

Презентация

§ 23

434(2,4); 437(2,4)





64

Решение задач по теме «синус, косинус и тангенс угла»

Учебный практикум

Компьютерный тест

Тестовая программа

§ 23

439(2,4,8)




65

Знаки синуса, косинуса и тангенса

Комбинированный

Знаки синуса и косинуса, знаки тангенса.

Знать: как определять знаки синуса, косинуса и тангенса простого аргумента по четвертям.

Уметь: определять знаки синуса, косинуса и тангенса простого аргумента по четвертям.

Тренажёр

Презентация

§ 24


447; 449




66

Зависимость между синусом, косинусом и тангенсом одного и того же угла

Комбинированный

Тригонометрические функции числового аргумента, тригонометрические соотношения одного аргумента.

Знать: основные тригонометрические тождества.

Уметь: упрощать выражения с применением основных формул тригонометрических функций одного аргумента

Составление опорного конспекта, ответы на вопросы


§ 25

458(2); 462(4)





67

Нахождение значений тригонометрических функций

Учебный практикум

Математический диктант


§ 25

460(2,4)




68

Тригонометрические тождества

Комбинированный

Тождества, способы доказательства тождества, преобразование выражений.

Знать: как доказываются основные тригонометрические тождества.

Уметь: упрощать тригонометрическое выражение, используя для его упрощения тригонометрические тождества.

Фронтальный опрос

Проверка домашнего задания.


§ 26

465(2,4,6); 467(2,4)




69

Доказательство тригонометрических тождеств

Поисковый

Математический диктант


§ 26

471; 462(2)




70

Упрощение тригонометрических выражений

Учебный практикум

Самостоятельная работа


§ 26

464; 463(2,4)




71

СИНУС, КОСИНУС И ТАНГЕНС УГЛОВ α и - α

Проблемный

Поворот точки на α и

, определение тангенса, формулы синуса, косинуса и тангенса углов α и

Знать: как упростить выражения, применяя формулы синуса, косинуса и тангенса углов α и –α.

Уметь: упрощать выражения, применяя формулы синуса, косинуса и тангенса углов α и

Тестовая работа

Презентация

§ 27

475(2,4,6); 476(2,4)




72

Формулы сложения

Комбинированный

Формулы синуса и косинуса суммы аргумента, формулы синуса и косинуса разности аргумента.

Знать: формулу синуса, косинуса суммы и разности двух углов.

Уметь: преобразовывать простые выражения, используя основные тождества, формулы сложения.

Теоретический тест

Презентация

§ 28

481(4); 482(2,4)

483(2)




73

Применение формул сложения

Учебный практикум

Проверка домашнего задания.

Самостоятельная работа.


§ 28

487(2,4); 491(4)





74

Синус, косинус и тангенс двойного угла

Проблемный

Формулы двойного аргумента, формулы кратного аргумента.

Знать: формулы двойного угла и синуса, косинуса и тангенса.

Уметь: применять формулы для упрощения выражений.

Проблемные

задачи, построение алгоритма действия, решение

упражнений

Презентация

502; 503(2)





75

Применение формул двойного угла

Учебный практикум

Самостоятельная работа


§ 29

504(2); 508(1,2)




76

Синус, косинус и тангенс половинного угла

Комбинированный

Формулы половинного угла, формулы понижения степени.

Знать: формулы половинного угла и понижения степени синуса, косинуса и тангенса.

Уметь: применять формулы для упрощения выражений.

Составление

опорного

конспекта

Презентация

§ 30

514(2,4); 515




77

Применение формул половинного угла

Учебный практикум

Компьютерный тест

Тестовая программа

§ 30

516(2,4); 517(2,4)




78

Формулы приведения

Проблемный

Формулы приведения, углы перехода

Знать: вывод формул приведения.

Уметь: упрощать выражения, используя основные тригонометрические тождества и формулы приведения.

Проблемные задачи


§ 31

525(2,4,6); 526(2,4,6,8)




79

Применение формул приведения

Учебный практикум

Самостоятельная работа


§ 31

530(2); 531(2)




80

Сумма и разность синусов. Сумма и разность косинусов

Комбинированный

Формулы преобразования суммы тригонометрических функций в произведение.

Уметь: преобразовывать суммы тригонометрических функций в произведение; проводить преобразования простых тригонометрических выражений.

Построение

алгоритма

действия


§ 32

537(2,4); 538(2,4)




81

Упрощение тригонометрических выражений

Учебный практикум

Самостоятельная работа


§ 32

541(2); 545




82

Решение задач по теме «тригонометрические формулы»

Урок повторения и обобщения

Систематизация теории и отработка навыков решения задач по теме. Подготовка к контрольной работе.

Уметь: обобщать и систематизировать знаний по основным темам раздела «Тригонометрические формулы». Решать ключевые задачи темы.

Самостоятельное решение задач


Индивидуальные задания




83

Контрольная работа по теме «тригонометрические формулы»

Урок контроля знаний и умений учащихся

Проверка знаний, умений и навыков по теме.

Уметь: применять полученные знания и умения при решении задач

Индивидуальное решение контрольных заданий


Работа над ошибками




ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ (13 часов)




Основные цели:

  • формирование представлений о решении тригонометрических уравнений на числовой окружности, об арккосинусе, арксинусе, арктангенсе и арккотангенсе, о решении тригонометрических неравенств;

  • формирование умений решения однородных тригонометрических уравнений;

  • овладение умением решения тригонометрических уравнений методом введения новой переменной, разложения на множители;

  • овладение навыками решения тригонометрических неравенств с помощью графиков соответствующих функций;

  • расширение и обобщение сведений о видах тригонометрических уравнений




84

Уравнение

Cos х = а


Арккосинус числа, уравнение cos х=а, формула корней уравнения cos х=а


Знать: определение арккосинуса числа, формулу решения уравнения cos х = а, частные случаи решения уравнения (cos х = 1, cos х = -1, cos х = 0)

Уметь: решать простейшие тригонометрические уравнения по формулам.

Проблемные дифференцированные задания

Презентация

§ 33

569; 571(2) 572(2)




85

Решение уравнений вида

Cos х = а

Проблемный

Самостоятельная работа


§ 33

581; 582




86

Уравнение

Sin х = а

Проблемный

Арксинус числа, уравнение sin х = а, формула корней уравнения sin х = а

Знать: определение арксинуса числа, формулу решения уравнения sin х = а, частные случаи решения уравнения

(sin х = 1, sin х = - 1, sin х = 0)

Уметь: решать простейшие тригонометрические уравнения по формулам.

Фронтальный опрос

Презентация

§ 34

587; 589(2)

590(2)




87

Решение уравнений вида

Sin х = а

Поисковый

Проверка домашнего задания.

Самостоятельная работа


§ 34

591

(2,4,6); 592(2)




88

Уравнение

Tg х = а


Проблемный

Арктангенс числа, уравнение tg x = а, формула корней уравнения tg x = a.

Знать: определение арктангенса числа, формулу решения уравнения tg х=а.

Уметь: решать простейшие тригонометрические уравнения по формулам.

Решение проблемных задач

Презентация

§ 35

608(2,3); 609(2,4)

610 (2, 4)




89

Решение уравнений вида

Tg х = а

Комбинированный

Проверка домашнего задания.

Самостоятельная работа


§ 35

611 (2)

612 (2, 4)





90

Решение тригонометрических уравнений

Комбинированный

Уравнения, сводимые к квадратным, замена переменных, уравнения вида a sin х + b cos x = с, вспомогательный аргумент, уравнения, решаемые разложением левой части на множители.

Знать: метод вспомогательного аргумента при решении тригонометрических уравнений.

Уметь: решать простейшие тригонометрические уравнения, квадратные уравнения относительно одной из тригонометрических функций, однородные и не однородные уравнения

Составление опорного конспекта, ответы на вопросы


§ 36

621(2,4)

622 (2, 4)




91

Решение тригонометрических уравнений методом введения вспомогательного угла

Учебный практикум

Проверка домашнего задания.



§ 36

624(2,4); 625(2,4)





92

Решение тригонометрических уравнений , разложением левой части на множители

Учебный практикум

Самостоятельная работа


§ 36

626(2,4); 627(2,4)





93

Примеры решения простейших тригонометрических неравенств

Комбинированный

Тригонометрическое неравенство, единичная окружность, решение неравенства, множество отрезков.

Знать: как решать простейшие тригонометрические неравенства.

Уметь: решать простейшие тригонометрические неравенства с помощью координатной окружности или с помощью графиков соответствующих функций

Составление опорного конспекта, ответы на вопросы

Презентация

§ 37

648(2,4); 649(2,4)





94

Решения простейших тригонометрических неравенств

Учебный практикум

Проверка домашнего задания.

Самостоятельная работа


§ 37

650(2,4); 651(2,4)





95

Решение задач по теме «тригонометрические уравнения»

Урок повторения и обобщения

Систематизация теории и отработка навыков решения задач по теме. Подготовка к контрольной работе.

Уметь: обобщать и систематизировать знаний по основным темам раздела «Тригонометрические уравнения». Решать ключевые задачи темы.

Самостоятельное решение задач


Индивидуальные задания




96

Контрольная работа по теме «тригонометрические уравнения»

Урок контроля знаний и умений учащихся

Проверка знаний, умений и навыков по теме.

Уметь: применять полученные знания и умения при решении задач

Индивидуальное решение контрольных заданий


Работа над ошибками




ИТОГОВОЕ ПОВТОРЕНИЕ (6 ЧАСОВ)



97

Повторение по теме «показательная функция»

Комбинированный

Показательное уравнение и неравенство, методы решения показательных уравнений и неравенств, показательная функция, свойства показательной функции, график функции.

Знать: показательные уравнения.

Уметь: решать простейшие показательные уравнения, их системы; использовать для приближенного решения уравнений графический метод; развернуто обосновывать суждения.

Решение качественных задач.

Работа с раздаточным материалом

Презентация

Индивидуальные задания




98

Повторение по теме «логарифмическая функция»

Комбинированный

Логарифмическое неравенство, равносильные логарифмические неравенства, методы решения логарифмических неравенств и уравнений, логарифмическое уравнение, равносильные логарифмические уравнения, функция у = loga х, логарифмическая кривая, свойства логарифмической функции, график функции.

Уметь: решать простейшие логарифмические уравнения, их системы; использовать для приближенного решения уравнений графический метод; изображать на координатной плоскости множества решений простейших уравнений и их систем.

Решение качественных задач.

Работа с раздаточным материалом

Презентация

Индивидуальные задания




99

Повторение по теме «тригонометрические уравнения»

Комбинированный

Тригонометрические формулы одного, двух и половинного аргумента, формулы приведения, формулы перевода произведения функций в сумму и наоборот.

Уметь: преобразовывать простые тригонометрические выражения, применяя различные формулы и приемы; работать с учебником, отбирать и структурировать материал

Решение качественных задач.

Работа с раздаточным материалом

Презентация

Индивидуальные задания




100

Итоговая контрольная работа

Урок контроля и обобщения знаний

Проверка знаний, умений и навыков по основным темам курса алгебры 10 класса

Уметь: применять полученные знания и умения при решении задач

Дифференцированные контрольно-измерительные материалы


Самоподготовка




101

Итоговая контрольная работа


Повторить главы 1 - 6




102

Анализ итоговой работы. Работа над ошибками.

Урок коррекции знаний и умений

Анализ ошибок, допущенных в контрольной работе, устранение пробелов в знаниях.

Уметь: выполнять работу над ошибками, допущенными в контрольной работе

Работа над ошибками. Самостоятельное решение задач







Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

Автор
Дата добавления 18.05.2016
Раздел Математика
Подраздел Статьи
Просмотров36
Номер материала ДБ-088350
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх