Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Разработка урока по теме "Вынесение множителя из-под знака корня"

Разработка урока по теме "Вынесение множителя из-под знака корня"


  • Математика

Поделитесь материалом с коллегами:

Урок № 38


ТЕМА: Вынесение множителя за знак корня.

Цели:

  • Изучить преобразование квадратных корней, как вынесение множителя за знак корня.

  • Формировать умение выполнять такое преобразование.

  • Развивать память, внимание и логическое мышление у учащихся

  • Вырабатывать трудолюбие


Ход урока

  1. Организационный момент.

Сообщение темы и целей урока.


II. Устная работа.

Вычислите:

а) hello_html_10e1f7b7.gif; б) hello_html_m1c18d1e7.gif; в) hello_html_6eadbcab.gif; г) hello_html_m1a648575.gif;

д) hello_html_46b66585.gif; е) hello_html_mff8a546.gif; ж) hello_html_m52bfe67b.gif; з) hello_html_m134ac48a.gif.


III. Объяснение нового материала.

Объяснение материала проводить согласно пункту учебника, но придать ему больше проблемности и требовать от учащихся самостоятельности при формулировании выводов.

1. Поставить проблему: как сравнить значения выражений hello_html_6400f59b.gif и hello_html_30fe07e.gif.

2. Рассмотреть первый способ, который может быть использован для этого.

3. Сделать выводы.

Спросить учащихся, какое действие нужно было выполнить при решении задачи первым способом.

Сообщить им, что такое преобразование называется вынесением множителя из-под знака корня.

После этого можно задать учащимся вопрос: в каких случаях пригодятся умения выносить множитель из-под знака корня? Добиться, чтобы учащиеся выделили две основные ситуации, в которых применяются данные умения:

1) Сравнение двух выражений.

2) Преобразование выражений.


IV. Формирование умений и навыков.

З а д а н и я можно разбить на две г р у п п ы:

  • Вынесение множителя за знак корня.

  • Сравнение значений выражений с корнями.

1-я г р у п п а.

407, № 408.

Не все учащиеся могут быстро раскладывать подкоренные выражения на два «удобных» множителя. Некоторые подбирают «очевидные» делители, например 4 или 9. В этом случае не нужно требовать от учащихся, чтобы они отыскивали другое разложение, главное – получение верного результат.

Н а п р и м е р, hello_html_m6d45eda3.gif.

Этот же результат можно получить по-другому:

hello_html_6e8737af.gif.

2-я г р у п п а.

1. № 416.

2. № 411.

Р е ш е н и е

Из данных четырёх выражений не имеет смысла то, которое содержит под корнем отрицательное число. Таким образом, нужно сравнить с нулём все подкоренные выражения. А для этого нужно сравнить уменьшаемое и вычитаемое.

1. hello_html_mf0e2d4e.gif имеет смысл, так как hello_html_582ccaa9.gif > 4.

2. hello_html_6e110b96.gif имеет смысл, так как hello_html_m66520858.gif > hello_html_1b64b270.gif.

3. hello_html_m2000176b.gif имеет смысл, так как hello_html_7fa88c30.gif > hello_html_m16a55cf2.gif.

4. hello_html_5dc896c7.gif не имеет смысла, так как hello_html_m7f348e99.gif < 14.


  1. Итоги урока.

В о п р о с ы у ч а щ и м с я:

В чём состоит приём вынесения множителя из-под знака корня?

Как сравнивать значения выражений, содержащих корни?

Как сравнивать корень с целым числом?


  1. Домашнее задание: прочитать п.18, выполнить № 409, № 417.



3



Автор
Дата добавления 09.12.2015
Раздел Математика
Подраздел Конспекты
Просмотров204
Номер материала ДВ-244796
Получить свидетельство о публикации

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх