Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Задачи по теме "Комбинаторика"

Задачи по теме "Комбинаторика"

Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика

Поделитесь материалом с коллегами:

Задачи для решения на закрепление нового материала

Задача № 1. Сколькими способами могут быть расставлены 5 участниц финального

забега на 5-ти беговых дорожках?

Решение: Р5 = 5!= 1 ∙2 ∙3 ∙4 ∙5 = 120 способов.


Задача №2. Сколько трехзначных чисел можно составить из цифр 1,2,3, если каждая

цифра входит в изображение числа только один раз?

Решение: Число всех перестановок из трех элементов равно Р3=3!, где 3!=1 * 2 * 3=6

Значит, существует шесть трехзначных чисел, составленных из цифр 1,2,3.


Задача № 3. Сколькими способами четверо юношей могут пригласить четырех из шести

девушек на танец?

Решение: два юноши не могут одновременно пригласить одну и ту же девушку. И

варианты, при которых одни и те же девушки танцуют с разными юношами,

считаются разными, поэтому: hello_html_m5f909c49.gif

Задача № 4. Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5,

6, 7, 8, 9 при условии, что в записи числа каждая цифра используется только

один раз?

Решение: В условии задачи предложено подсчитать число всевозможных комбинаций из

трех цифр, взятых из предположенных девяти цифр, причём порядок

расположения цифр в комбинации имеет значение (например, числа 132)

и 231 различные). Иначе говоря, нужно найти число размещений из девяти

элементов по три.

По формуле числа размещений находим:

hello_html_m6d6d70f9.gifОтвет: 504 трехзначных чисел.

Задача №5 Сколькими способами из 7 человек можно выбрать комиссию, состоящую из 3

человек?

Решение: Чтобы рассмотреть все возможные комиссии, нужно рассмотреть все

возможные 3 – элементные подмножества множества, состоящего из 7

человек. Искомое число способов равно

hello_html_7d961485.gif

Задача № 6. В соревновании участвуют 12 команд. Сколько существует вариантов

распределения призовых (1, 2, 3) мест?

Решение: А123 = 12 ∙11 ∙10 = 1320 вариантов распределения призовых мест. Ответ: 1320 вариантов.


Задача № 7. На соревнованиях по лёгкой атлетике нашу школу представляла команда из

10 спортсменов. Сколькими способами тренер может определить, кто из них

побежит в эстафете 4100 м на первом, втором, третьем и четвёртом этапах?

Решение: Выбор из 10 по 4 с учётом порядка: hello_html_110ed0a3.gifhello_html_3e674d12.gif способов.

Ответ: 5040 способов.



Задача № 8. Сколькими способами можно выложить в ряд красный, черный, синий и

зеленый шарики?

Решение: На первое место можно поставить любой из четырех шариков (4 способа), на

второе – любой из трех оставшихся (3 способа), на третье место – любой из

оставшихся двух (2 способа), на четвертое место – оставшийся последний шар.

Всего 4 · 3 · 2 · 1 = 24 способа.

Р4 = 4! = 1 · 2 · 3 · 4 = 24. Ответ: 24 способа.

Задача № 9. Учащимся дали список из 10 книг, которые рекомендуется прочитать во

время каникул. Сколькими способами ученик может выбрать из них 6 книг?

Решение: Выбор 6 из 10 без учёта порядка: hello_html_m53e5075c.gif способов.

Ответ: 210 способов.



Задача № 10. В 9 классе учатся 7 учащихся, в 10 - 9 учащихся, а в 11 - 8 учащихся. Для

работы на пришкольном участке надо выделить двух учащихся из 9 класса,

трех – из 10, и одного – из 11 . Сколько существует способов выбора

учащихся для работы на пришкольном участке?

Решение: Выбор из трёх совокупностей без учёта порядка, каждый вариант выбора из

первой совокупности (С72) может сочетаться с каждым вариантом выбора из

второй (С93) ) и с каждым вариантом выбора третьей (С81) по правилу

умножения получаем:

hello_html_548c2702.gif

Ответ: 14 112 способов.

Задача № 11. Девятиклассники Женя, Сережа, Коля, Наташа и Оля побежали на

перемене к теннисному столу, за которым уже шла игра. Сколькими

способами подбежавшие к столу пятеро девятиклассников могут занять

очередь для игры в настольный теннис?

Решение: Первым в очередь мог встать любой девятиклассник, вторым – любой из

оставшихся троих, третьим – любой из оставшихся двоих и четвёртым –

девятиклассник, подбежавший предпоследним, а пятым – последний. По

правилу умножения у пяти учащихся существует 5· 4321=120 способов

занять очередь.




Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy

Автор
Дата добавления 25.09.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров450
Номер материала ДБ-212675
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх