Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Тесты / Задания промежуточной аттестации по математике 8 класс
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Задания промежуточной аттестации по математике 8 класс

библиотека
материалов

Муниципальное бюджетное общеобразовательное учреждение

«Чакырская средняя общеобразовательная школа»

муниципального района «Амгинский улус (район)»

Республики Саха (Якутия)


Согласовано:____________ Утверждаю:_____________

зам. директора по УМР директор МБОУ «Чакырская СОШ» _____________Иванова З.Н. ____________Шадрин С.С.

«___» _____________2016 «___» ____________2016








Контрольно - измерительный материал

промежуточной аттестации

по математике в 8 классе

за 2015-16 учебный год.




Составитель: Федорова А. Д.

Принят на заседании НМС учитель математики


протокол №__ от__________




















Чакыр, 2016.



Пояснительная записка.

Контрольно-измерительные материалы содержат задания промежуточной аттестации по алгебре в 8 классе. Данное задание отвечает действующей программе по математике и ориентировано на учебно-методический комлект:

1. Мордкович, А. Г. Алгебра. 8 класс : в 2 ч. Ч. 1 : учеб. для учащихся общеобразоват. учреждений / А. Г. Мордкович. – М. : Мнемозина, 2010.

2. Мордкович, А. Г. Алгебра. 8 класс : в 2 ч. Ч. 2 : задачник для учащихся общеобразоват. учреждений / А. Г. Мордкович [и др.] ; под ред. А. Г. Мордковича. – М. : Мнемозина, 2010.

Программа: Программы. Математика. 7-9 классы. / авт.-сост. И. И. Зубарева, А.Г. Мордкович.- М. Мнемозина, 2011.

На изучение предмета алгебра за 8 класс отводится 3 часа в неделю, всего 105 часов в год.

Основные требования к уровню подготовки учащихся.

В результате изучения математики ученик должен

знать: Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразования выражений.

Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями.

Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычислениях.

Уравнения и неравенства. Квадратное уравнение: формула корней квадратного уравнения, решение рациональных уравнений.

Неравенство с одной переменной. Решение неравенства. Квадратные неравенства.

Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.

Переход от словесной формулировки соотношений между величинами к алгебраической. Решение текстовых задач алгебраическим способом.

Числовые функции. Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций.

Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Графики функций: корень квадратный, модуль. Использование графиков функций для решения уравнений.

Параллельный перенос графиков вдоль осей координат.

Координаты. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.

Четырехугольники. Многоугольник, выпуклый многоугольник, четырехугольник. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники. Параллелограмм, его свойства и признаки. Прямоугольник, ромб, квадрат, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция. Осевая и центральная симметрия.

Площадь. Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Подобные треугольники. Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

Окружность. Взаимное расположение прямой и окружности. Касательная к окружности, ее свойства и признак. Центральный, вписанный углы; величина вписанного угла; двух окружностей; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.

уметь:

- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать с помощью формул одну переменную через остальные;

- выполнять основные действия с алгебраическими дробями; выполнять тождественные преобразования рациональных выражений;

- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений содержащих квадратные корни;

- решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;

- решать линейные и квадратные неравенства с одной переменной;

- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений исходя из формулировки задачи;

- изображать множество решений линейного неравенства;

- находить значения функции заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

- определять свойства функции по ее графику; применять графические представления при решении уравнений, неравенств;

- описывать свойства изученных функций, строить их графики;

- пользоваться геометрическими языком для описания предметов окружающего мира;

- распознавать геометрические фигуры, различать их взаимное расположение;

- изображать геометрические фигуры; выполнять чертежи по условию задачи; осуществлять преобразования фигур;

- распознавать на чертежах, моделях и в окружающей обстановке основные геометрические фигуры, изображать их;

- вычислять значения геометрических величин (длин, углов, площадей); в том числе : находить стороны, углы и вычислять площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

- решать геометрические задачи, опираясь, на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, правила симметрии;

- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования.


использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

- для выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;

- для моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

- для описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

- для интерпретации графиков реальных зависимостей между величинами.

владеть компетенциями:

- учебно-познавательной, ценностно-ориентационной, рефлексивной, коммуникативной, информационной, социально-трудовой.

Для проверки усвоения учащимися основного требования к уровню подготовки учащихся проводится промежуточная аттестация.

Цели промежуточной аттестации:

─    проведение независимого контроля усвоения учебного материала обучающимися;

─    повышение мотивации обучения школьников;

─    психологическая адаптация к сдаче устных и письменных экзаменов;

─    подготовка учащихся к сдаче ОГЭ;

─    повышение ответственности учителей-предметников за результаты труда, за степень освоения обучающимися государственного образовательного стандарта, определённого образовательной программой.

Задания промежуточной аттестации по математике в 8 классе состоят из двух частей. Часть 1 направлена на проверку достижения уровня обязательной подготовки, т.е. на проверку усвоения элементов содержания, составляющих основы курса 8 класса, без знания которых невозможно изучение математики и смежных предметов в следующих классах. Она содержит по 5 заданий, соответствующих минимуму содержания курса математики за 8 класс. Часть 2 направлена на дифференцируемую проверку повышенного уровня владения программным материалом. Цель – выявить умение решать задачи, значимые с точки зрения полноценного и качественного усвоения курса. На выполнение работы отводится 90 минут.

Распределение заданий по требованиям.

Название требования

Часть1

1

- упростить степенные выражения

2

- сравнивать любые действительные числа

3

- решать неполные квадратные уравнения

4

- решать линейные неравенства

5

- вычислять площади фигур

Часть 2



1

- сократить алгебраические дроби

2


- решать квадратные неравенства

3

- решать геометрическую задачу

4

- решать рациональные уравнения

5

- решать текстовую задачу на составление математической модели

Задания промежуточной аттестации

Вариант 1.

Часть 1.

А1. Упростите выражение: 6 2,5

  1. 2) 15 3) 15у 4)

А2. Сравните числа и 7

  1. = 7 2) < 7 3) > 7 4) 7

А3. Решите уравнение: 3х2 – 12 =0

  1. -2 2) 2 3) -2 и 2 4) -6 и 6

А4. Решите неравенство: 3х – 15 0

  1. х 2) х 5 3) х 4) х

А5. Найдите площадь параллелограмма, изображенного на рисунке

hello_html_5d002160.png


В1. Сократите алгебраическую дробь:

В2. Решите квадратное неравенство: 3х2 + 7х – 6 0

В3. Отрезки АВ и СD хордами окружности. Найдите расстояние от центра окружности до хорды СD, если АВ =30, СD=40, а расстояние от центра окружности до хорды АВ равно 20.

В4. Найдите корни уравнения: = -

В5. Теплоход, собственная скорость которого 18км/ч, прошел 50км по течению реки и 8км против течения, затратив на весь путь 3 часа. Какова скорость течения реки, если известно, что она не превосходит 10км/ч?

Вариант 2.

Часть 1.

А1. Упростите выражение: 2,8 (0,7 )

  1. 4 2) 3) 4) 4

А2. Сравните числа и 6

  1. = 6 2) < 6 3) > 6 4) 6

А3. Решите уравнение: 2х2 – 18 =0

  1. 3 2) -6 и 6 3) -3 4) -3 и 3

А4. Решите неравенство: 2х – 16 0

  1. х 2) х 8 3) х 4) х

А5. На клетчатой бумаге с размером клетки 11 изображена трапеция, Найдите ее площадь.

hello_html_6a8aa793.png

В1. Сократите алгебраическую дробь:

В2. Решите квадратное неравенство: 5х2 – 17х -12 0

В3. Прямая параллельная стороне АС треугольника АВС, пресекает стороны АВ и ВС в точках К и М соответственно. Найдите АС, если ВК:КА=2:3, КМ=14.

В4. Найдите корни уравнения: + =

В5. Катер прошел 40 км по течению реки и 6км против течения, затратив на весь путь 3 часа. Какова собственная скорость катера, если скорость течения 2км/ч.

Критерии оценивания.

1 часть содержит 5 заданий. Задание первой части считается выполненным, если верно указан ответ. Максимальное число баллов за одно задание – 1 балл.

2 часть содержит 5 заданий. Эта часть требует полного решения с ответом. Задание второй части считается выполненным верно, если учащийся выбрал правильный путь решения и получил верный ответ. Если при решении допущена ошибка, не влияющий на ответ, то учащемуся можно дать 1балл. Максимальное число баллов за это задание – 2балла.

Схема перевода рейтинга в школьную отметку

«3»

«4»

«5»

0-3б

4-8б

9-12б

13-15б

Ответы к заданиям.

ответы

Вариант 2

ответы

Часть 1

1

3

Часть 1

1


4

2

2

2

2

3

3

3

4

4

2

4

2

5

32

5

22

Часть 2

1

х+4

Часть2

1

х+5

2

(-3;)

2

(-;-0,6) и (4;+

3

15

3

35

4

-7,5

4

-3,2

5

2км/ч

5

14км/ч

Использованная литература

1. Мордкович, А. Г. Алгебра. 8 класс : в 2 ч. Ч. 1 : учеб. для учащихся общеобразоват. учреждений / А. Г. Мордкович. – М. : Мнемозина, 2010.

2. Мордкович, А. Г. Алгебра. 8 класс : в 2 ч. Ч. 2 : задачник для учащихся общеобразоват. учреждений / А. Г. Мордкович [и др.] ; под ред. А. Г. Мордковича. – М. : Мнемозина, 2010.

3. Мордкович, А. Г. Алгебра. 8 класс : метод. пособие для учителя / А. Г. Мордкович. – М. : Мнемозина, 2010.

4. Дудницын, Ю. П. Алгебра. 8 класс : контрольные работы / Л. А. Александрова ; под ред. А. Г. Мордковича. – М. : Издательство «Экзамен», 2010

5. Александрова, Л. А. Алгебра. 8 класс : контрольные и самостоятельные работы по алгебре: к учебнику А. Г. мордковича. – М. : Издательство «Экзамен», 2011.

6. Ключникова, Е. М. Тесты по алгебре: 8 класс: к учебнику А. Г. Мордковича»Алгебра. 8 класс»– М. : Издательство «Экзамен», 2011.









Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 13.05.2016
Раздел Математика
Подраздел Тесты
Просмотров1188
Номер материала ДБ-079224
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх