Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Начальные классы / Другие методич. материалы / Перспективный план по самообразованию
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Начальные классы

Перспективный план по самообразованию

библиотека
материалов

Муниципальное бюджетное общеобразовательное учреждение

«Советская средняя школа №3 с крымскотатарским языком обучения»













ЛИЧНЫЙ ПЕРСПЕКТИВНЫЙ ПЛАН

ПО САМООБРАЗОВАНИЮ





Мавлитова Э.В.

учитель начальных классов


















п. Советский

2015 г.

ТЕМА САМООБРАЗОВАНИЯ: «Развитие логического мышления на уроках математики в начальной школе»

ЦЕЛЬ: создание условий для развития логического мышления на уроках математики в начальных классах

АКТУАЛЬНОСТЬ: Развитие логических суждений способствует повышению мотивации к учебной деятельности

НОВИЗНА: Широкое использование на уроках новых информационных технологий.

ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ: Развитие логики в раннем возрасте – фундамент дальнейшего успешного обучения.

  • Изучить современную литературу по теме самообразования.

  • Развивать познавательный интерес к обучению через игру, нетрадиционные уроки и внеклассную работу.

  • Изучить особенности детей младшего школьного возраста.

  • Изучить как влияют уроки математики на развитие логического мышления.

  • Рассмотреть теоретические основы развития логического мышления на уроках математики: рассмотреть теория развития мышления у детей, определить роль математики в развитии логического мышления школьников, раскрыть логические задачи, применяемые на уроках математики.

  • Использовать на уроках новейшие информационные технологии и средства телекоммуникации;

  • Исследовать методику использования логических задач на уроках математики, а также раскрыть различные формы работы с логическими задачами.

НАПРАВЛЕНИЯ САМООБРАЗОВАНИЯ: профессиональное, методическое.

ИСТОЧНИКИ САМООБРАЗОВАНИЯ: Методическая литература, журналы, семинары и конференции,  курсы повышения квалификации, мастер-классы, уроки коллег, Интернет, общения с коллегами.

ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ:



  1. Повышение своего теоретического уровня, компетентности и научно-методической подготовки;

  2. Усиление положительной мотивации обучения;

  3. Улучшение качества знаний учащихся.




ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Новые социальные запросы, отраженные в тексте ФГОС, определяют цели образования как общекультурное, личностное и познавательное развитие учащихся, обеспечивающие такую ключевую компетенцию образования, как «научить учиться». Формирование универсальных учебных действий: личностных, познавательных, регулятивных и коммуникативных – в образовательном процессе осуществляется в процессе усвоения разных учебных предметов.  Вопросы нравственного развития, вопросы воспитания личности, совершенствование человека волнуют общество особенно сейчас.

Реформа школы продолжается, и главным ее двигателем по-прежнему остается учитель, находящийся в центре школьной жизни. Роль учителя повышается, кроме того, растут требования к его профессиональным качествам. На педагогическом поприще нужны не просто профессионалы, а, яркие личности, способные работать творчески.

Обязательным условием  формирования личности педагога является овладение исследовательскими навыками. Функции педагогической деятельности учителя начальных классов отражают как общее назначение учителя, так и тот особый социальный заказ, который обусловлен спецификой начальной школы и современными требованиями к ней.

             Современный учитель начальной школы является одновременно преподавателем, воспитателем, организатором деятельности детей, активным участником общения с учениками, их родителями и коллегами, исследователем педагогического процесса, консультантом, просветителем и общественником. Он постоянно повышает уровень своего профессионализма и педагогического мастерства, ведет творческий поиск нового.

           Изменения, происходящие в современной системе образования, делают  актуальным повышение квалификации и профессионализма педагога, т.е. его профессиональной компетентности. Свободно мыслящий, прогнозирующий результаты своей деятельности и моделирующий образовательный процесс педагог является гарантом достижения  целей современного образования.

              Профессионально компетентным можно назвать учителя, который на достаточно высоком уровне осуществляет педагогическую деятельность, педагогическое общение, достигает стабильно высоких результатов в обучении и воспитании учащихся. Развитие профессиональной компетентности – это динамичный процесс усвоения и модернизации профессионального опыта, ведущий к развитию индивидуальных профессиональных качеств, накоплению профессионального опыта, предполагающий непрерывное самообразование, саморазвитие и самосовершенствование педагога.

 

Самообразование учителя– целенаправленная познавательная деятельность, управляемая самим педагогом. Данная деятельность включает в себя несколько этапов:

  • Выбор направления и темы самообразования.

  • Формулирование цели и задач самообразования.

  • Определение круга источников информации.

  • Выбор формы самообразования.

  • Составление плана самообразования.

  • Определение результата самообразования.

  • Анализ и оценка деятельности в процессе самообразования, подготовка отчета.

Формирование логического мышления – важнейшая составная часть педагогического процесса. Помочь учащимся в полной мере проявить свои способности, развить инициативу, самостоятельность, творческий потенциал – одна из основных задач современной школы. Успешная реализация этой задачи во многом зависит от сформированности у учащихся познавательных интересов. Роль математики в развитии логического мышления исключительно велика. Причина столь исключительной роли математики в том, что это наиболее теоретическая наука из всех исследованных в школе. В ней высокий уровень абстракции и в ней наиболее естественным способом изложения знаний является способ перехода от абстрактного к конкретному.

Как показывает опыт, в школьном возрасте одним из эффективных способов развития мышления является решение школьниками нестандартных логических задач. Математика обладает уникальным развивающим эффектом. Как никакой другой предмет математика дает реальные предпосылки для развития логического мышления.

«Она приводит в порядок ум», т.е. наилучшим образом формирует приемы мыслительной деятельности и качества ума, но не только. Ее изучение способствует развитию памяти, речи, воображения, эмоций; формирует настойчивость, терпение, творческий потенциал личности. Математик лучше планирует свою деятельность, прогнозирует ситуацию, последовательнее и точнее излагает мысли, лучше умеет обосновать свою позицию. Основная цель занятий математикой - дать ребёнку ощущение уверенности в своих силах, основанное на том, что мир упорядочен и потому постижим, а следовательно, предсказуем для человека. Чему можно научить ребенка при обучении математике? Размышлять, объяснять получаемые результаты, сравнивать. Высказывать догадки, проверять. Правильные ли они; наблюдать, обобщать и делать выводы.

В принципе в учебниках математики достаточно четко прослеживается линия на развитие познавательных интересов учащихся: в них есть упражнения, направленные на развитие внимания, наблюдательности, памяти, а также задания развивающего характера, задания логического характера, задания, требующие применение знаний в новых условиях. Такие задания должны включаться в занятия в определенной системе через использование метода индуктивного рассуждения, вести учащихся к цели. Необходимо учить детей подмечать закономерности, сходство и различие начиная с простых упражнений, постепенно усложняя их.

Надо помнить, что математика - один из наиболее трудных учебных предметов, но включение дидактических игр и упражнений позволяет чаще менять виды деятельности на уроке, и это создает условия для повышения эмоционального отношения к содержанию учебного материала, обеспечивает его доступность и осознанность.

Значительное место вопросу обучения младших школьников логическим задачам уделял в своих работах известный отечественный педагог В. Сухомлинский. Суть его рассуждений сводится к изучению и анализу процесса решения детьми логических задач, при этом он опытным путем выявлял особенности мышления детей. О работе в этом направлении он так пишет в своей книге «Сердце отдаю детям»: В окружающем мире - тысячи задач. Их придумал народ, они живут в народном творчестве как рассказы-загадки.

В работе по развитию логического мышления нужно использовать также систему нетрадиционных заданий, упражнений, игр. Они направлены на развитие практически всех мыслительных операций. Их можно с успехом применять на уроках, рекомендовать использовать их родителям во время занятий с детьми. Тем более, что нетрадиционные задания, упражнения, игры в настоящее время не являются дефицитом. Огромное количество печатной продукции, видео продукции, всевозможных игр – все это можно, выборочно с учетом возрастных и психологических особенностей учащихся использовать в учебной, внеклассной работе и соответственно в семье.

Но развитие логического мышления невозможно в принципе без знаний особенностей психологии младшего школьного возраста. Все это необходимо для того, чтобы ребенок успешно закончил младшие классы, успешно учился в среднем звене школы, т.е. необходимо помочь ему в развитии его психических процессов, становлении психических функций, которые способствуют:

  • формированию теоретического мышления;

  • «память становится мыслящей»;

  • «восприятие становится думающим»;

  • внимание становится произвольным;

  • формированию способности к саморегуляции;

  • происходит осознание своего личного отношения к миру;

  • изменяется содержание внутренней позиции детей;

  • изменяется характер самооценки;

  • складывается характер;

  • формируется интерес к содержанию учебной деятельности, приобретению знаний.

Учитывая все это нужно начинать обучение логическим действиям с формирования соответствующих элементарных умений.

В качестве заданий развивающих логическое мышление на уроках математики – это задания на:

  1. Выделение признаков предметов

  2. Узнавание предметов по заданным признакам

  3. Формирование способности выделять существенные признаки предметов

  4. Сравнение двух или более предметов

  5. Классификация предметов и явлений.

  6. Упражнения, направленные на формирование умения делить объекты на классы по заданному основанию

  7. Геометрическое лото.

  8. Здесь продолжается работа с детьми, закрепляются их знания, формы, величины и цвета предметов.

  9. Развитию логического мышления способствуют задания, которые можно назвать «Ошибки - невидимки».

  10. Логические задачи.

Большинство элементов развития логического мышления носят игровой смысл, но не следует приучать детей к тому, чтобы на каждом уроке они ждали игр или сказок, так как игра не должна являться самоцелью, а обязательно должна быть подчинена тем конкретным учебно-воспитательным задачам, которые решаются на уроке и во внеурочное время.

Систематическое использование на уроках математики и внеурочных занятиях специальных задач и заданий, направленных на развитие логического мышления, расширяет математический кругозор младших школьников и позволяет более уверенно ориентироваться в простейших закономерностях окружающей их действительности и активнее использовать математические знания в повседневной жизни.

Развитие мышления влияет и на воспитанность ребенка, развиваются положительные черты характера, потребность к развитию своих хороших качеств, работоспособность, планирование деятельности, самоконтроль и убежденность, любовь к предмету, интерес, желание учиться и много знать. Все это крайне необходимо для дальнейшей жизни ребенка. Достаточная подготовленность мыслительной деятельности снимает психологические перегрузки в учении, сохраняет здоровье ребенка.

Главная задача обучения математике, причем с самого начала, с первого класса, - учить рассуждать, учить мыслить, - писал педагог-новатор А.А. Столяр. Важнейшей задачей математического образования является вооружение учащихся общими приемами мышления, пространственного воображения, развитие способности понимать смысл поставленной задачи, умение логично рассуждать, усвоить навыки алгоритмического мышления.

 План

Направления

Мероприятия

Сроки

 

 

 

 Профессиональное

1. Основательно изучить новые образовательные стандарты, уяснить их особенности.

в течение  года

2. Знакомиться с новыми педагогическими технологиями через предметные издания и Интернет.

в течение  года

3. Повышать квалификацию на курсах для учителей начальных классов.

1 раз в 5 лет

4.Проходить аттестацию на категорию.

1 раз в 5 лет

5. Разработать рабочие программы по своим предметам.

ежегодно

6.Пополнять кабинет  карточками, перфокартами, наглядными пособиями.

в течение  года

7. Проводить всеобуч родителей и дни открытых дверей.

в течение  года

 

Психолого-педагогическое

1.Совершенствовать свои знания в области классической и современной психологии и педагогики.

в течение  года

2. Проводить психолого-педагогическую диагностику.

в течение  года

 

 

 

 

Методическое

 

1.Совершенствовать знания современного содержания образования учащихся по начальному курсу обучения.

в течение  года

2. Знакомиться с новыми формами, методами и приёмами обучения.

регулярно

3. Организовать работу с одарёнными детьми и принимать участие конкурсах творческих работ, олимпиадах

в течение  года

4. Изучать опыт работы лучших учителей района, области через Интернет.

регулярно

5. Посещать уроки коллег и участвовать в обмене опытом.

в течение  года

6. Продолжить работу по созданию методической «копилки»  лучших разработок уроков, интересных приемов и находок на уроке, сценариев внеклассных мероприятий.

в течение  года

 

Информационно-компьютерные технологии

1.Изучать ИКТ и внедрять их в учебный процесс.

в течение  года

2. Сбор и анализ в Интернете информации по начальному обучению, педагогике и психологии

в течение  года

3. Персональный сайт пополнять материалами.

ежемесячно

 

Охрана здоровья

1. Внедрять в образовательный процесс здоровье сберегающие технологии.

в течение  года

2. Приобщать детей к  здоровому образу жизни.

в течение  года





Задачи, упражнения, задания на развитие логического мышления

I.Выделение признаков предметов:

1.Из каких цифр состоит число: 27?

2.С какой цифры начинаются числа:14,18,25,46,37,56?

3.Какую форму имеет фигура?

4.Назовите какие-нибудь три признака этой фигуры.

5.Укажите признаки чисел: 2,24,241

6.Назовите признаки треугольника, квадрата, пятиугольника.

7.Укажите признаки чисел: 5, 55, 555.

8.Назовите признаки следующей геометрической фигуры:

9.С какой цифры начинаются числа: 21,215,23,242?

10.Почему данная фигура называется треугольником?

II. Узнавание предметов по заданным признакам

1.Какой предмет обладает одновременно следующими признаками:

а) имеет 4 стороны и 4 угла;

б) имеет 3 стороны и 3 угла.

2.Сколько у фигуры вершин, из скольких отрезков она состоит? Как

называется эта фигура?

3.Вставьте пропущенные числа:

а)5,15,…35,45;
б)34,44,54…,…,84;
в)12,22,…,42,52,…72;
г)6,12,18,…30,36,…; и т.д

4.Какие числа пропущены в примерах?

а)15+5х2=25
б)15+5х4=35
в)15+5х…=…
г)15х5х…=…
д)15+5х…=…
5.Какие числа пропущены в следующих примерах?

а)12+12:2=18
б)12+12:3=16
в)12+12: …=…

г)12+12: …=… и т.д.

III. Формирование способности выделять существенные признаки предметов

1.Треугольник (углы, стороны, чертеж, фанера, картон, площадь)

Ответ: (Углы, стороны).

2.Куб (углы, чертеж, камень, сторона)

Ответ: (углы, сторона)

Существенные признаки – это такие признаки, каждый из которых, взятый отдельно, необходим, а все вместе достаточны, чтобы с их помощью можно было отличить данный предмет от всех остальных.

IV. Сравнение двух или более предметов

1.Чем похожи числа?

а)7 и 71 б)77 и 17 в)31 и 38 г)24 и 624 д)3 и 13 д)84 и 754

2.Чем отличается треугольник от четырехугольника?

3.Найдите общие признаки у следующих чисел:

а)5 и 15 б)12 и 21 в)20 и 10 г)333 и 444 д)8 и 18 е)536 и 36

4.Прочитайте числа каждой пары. Чем похожи они и чем отличаются?

а)5 и 50 б)17 и 170 в)201 и 2010 г)6 и 600 д)42 и 420 е)13 и 31

5.Даны числа: 12,16,20,24,28,32.

Чем похожи эти числа? Чем они отличаются?

6.Чем отличается четырехугольник от пятиугольника?

В качестве предмета усвоения выступает само действие классификации, когда учащемуся приходится самостоятельно разделять предметы на классы, группы путем выделения в этих предметах тех или иных признаков.



V. Классификация предметов и явлений.

1.Дан набор квадратиков – черных и белых, больших и маленьких.

Разложить квадраты на такие группы:

а) большие и белые квадраты;

б) маленькие и черные квадраты;

в) большие и черные квадраты;

г) маленькие и белые квадраты.

2.Даны кружки: большие и маленькие, черные и белые. Они разделены на 2 группы:

По какому признаку разделены кружки:

а) по цвету;

б) по величине

в) по цвету и величине (правильный ответ).

3.Даны два пересекающихся круга в прямоугольнике. В них помещены треугольники, большие и

маленькие, черные и белые.

Задание:
а) покажи, где лежат большие белые треугольники;

б) покажи, где лежат маленькие белые треугольники;

в) покажи, где лежат большие черные треугольники;

г) покажи, где лежат маленькие черные треугольники.

4.Задания:
а) разложить карточки с фигурами по форме;

б) по величине

в) по цвету.

Затем задания можно усложнить:

а) выбери карточки с треугольниками красного цвета;

б) выбери карточки с треугольниками синего цвета;

в) выбери карточки с квадратами…. цвета и т.д.

VI. Упражнения, направленные на формирование умения делить объекты на классы по заданному основанию

1.Раздели на 2 группы следующие числа:

1,2,3,4,5,6,7,8,9,10.

Четные числа______________

Нечетные числа____________

К какой группе отнесешь числа: 16,31,42,18,37?

2.Раздели на 2 группы следующие числа:

2,13,3,43,6,55,18,7,9,31
однозначные числа____________

двузначные числа______________

3.Назови группы чисел одним словом:

а)2,4,6,8 – это ________________

б)1,3,5,7,9 – это ______________

4.Назови группу чисел одним словом:

а)2,4,7,9,5,6-это__________________
б)18,25,33,48,57 – это_____________

в)231,564,872,954 – это ___________

5.Школьникам дается набор карточек.

Задания: разложить карточки на следующие группы:

а) по форме

б) по количеству предметов

6.Дан набор геометрических фигур:

-двух форм (треугольники и квадраты)

-двух цветов (красные и зеленые)

-двух размеров (большие и маленькие)

Задание: разложите фигуры:

а) по цвету

б) по форме

в) по величине

Проверка результатов классификации.

1.Следующие числа:1,2,3,5,8,12,16,24,35,48 – распределить на 2 группы:

-однозначные и двузначные:

-однозначные______________
-двузначные_______________
В какой таблице числа расположены на группы правильно?

а) 1,2,3,5,12 8,16,24,35,48

б) 1,2,3,5,8,16 12,24,35,48

в) 1,2,3,5,8 12,16,24,35,48

г) 2,3,5,8 1,12,6,16,24,35,48

2.Прочитай числа: 22,35,48,51,31,45,27,24,36,20

Разбей эти числа на 2 группы: четные и нечетные

Четные_____________
Нечетные___________
На какой строчке числа распределены по группам правильно?

31,35,27,45,51,22 48,24,20,36

31,35,27,45,51 27,20,24,36,22,48

27,31,35,45,51 20,22,24,36,48

26,31,36,35,45,51 20,22,24,48

3.Прочитай числа каждой строки:

1,2,3,4,5,6,7,8,9
20,21,22,23,24,25,26,27,28
321,322,323,324,325,326,327
Что послужило основанием для такой классификации?

Выбери правильный ответ:

а) числа распределены на четные и нечетные;

б) числа распределены на однозначные, двузначные и трехзначные

4.Числа: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,29

распредели на группы двумя способами и т.д.

Из разных цифр я сделал бусы,

А в тех кружках, где чисел нет,

Расставьте минусы и плюсы,

Чтоб данный получить ответ.

VII.Геометрическое лото.

Здесь продолжается работа с детьми, закрепляются их знания, формы, величины и цвета предметов.

Большой наблюдательности требуют от учащихся логические цепочки, которые нужно продолжить вправо и влево, если такое возможно. Чтобы выполнить задание, необходимо установить закономерность в записи чисел:

Ответы
……5 7 9…… (1 3 5 7 9 11 13)

..5 6 9 10….. (1 2 5 6 9 10 13 14)

..21 17 13….. (29 25 21 17 13 9 51)

6 12 18………. (6 12 18 24 30 36..)

..6 12 24…… (36 12 24 48 96…)

0 1 4 5 8 9…….. (014589 12 13 16 17)

0 1 4 9 16……… (0149 16 25 36 49..)

Интересная игра «Лишнее число».

Даны числа: 1,10,6 Какое из них лишнее?

Лишним может быть 1 (нечетное)

Лишним может быть 10 (двузначное)

Лишним может быть 6 (1 и 10 использована 1)


Даны числа:6,18,81 Какое число лишнее?

Сравнение можно провести по четности, нечетности, однозначности, двузначности, участие цифр 1 и 8 в написании. Но кроме того их можно сравнить и по наличию одинаковых делителей.


Сравнивать можно и математические выражения:

3+4
1+6
Что общего?

На первый взгляд ничего общего, кроме знака действий, но … первые слагаемые меньше вторых,первые слагаемые – нечетные, а вторые четные. Да и сумма одинаковая.


VIII. Развитию логического мышления способствуют задания, которые можно назвать «Ошибки - невидимки».


На доске записывается несколько математических выражений, содержащих явную ошибку. Задача учеников, ничего не стирая и не исправляя, сделать ошибку невидимой. Дети могут дать разные варианты исправления ошибки.



Задания и варианты исправления ошибок:

10 < 10 8=7 6+3=10

10 < 100 15-8=7 6+3=10-1

10 < 10+1 8=7+1 1+6+3=10

12-10 < 10

Представленные задания, игры, упражнения вызывают у детей большой интерес. А ведь именно он должен лежать в основе обучения младшего школьника. Интерес поддерживает высокий уровень познавательной активности, что в свою очередь способствует развитию интеллектуальных способностей ребенка.

Логические задачи позволяют продолжить занятия с детьми по овладению такими понятиями, как слева, справа, выше, ниже, больше, меньше, шире, уже, ближе, дальше и др.
IX. Логические задачи.

Примеры логических задач связанных с математикой способствующих развитию логического мышления:

1.На веревке завязали пять узлов. На сколько частей эти узлы разделили веревку?
2.Чтобы распилить доску на несколько частей, ученик сделал на ней шесть отметок. На сколько частей ученик распилит доску?

3. По улице идут два сына и два отца. Всего три человека. Может ли так быть?
4.Термометр показывает три градуса мороза. Сколько градусов покажут два таких термометра?
5.Алеша на дорогу в школу тратит 5 минут. Сколько минут он потратит, если пойдет вдвоем с сестрой?

6. Коля ростом выше Андрея, но ниже Сережи. Кто выше Андрей или Сережа?
7.В прямоугольной комнате следует расставить 8 стульев так. Чтобы у каждой стены стояло по 3 стула.

8.Чтобы сварить 1 кг мяса требуется 1 час. За сколько часов сварится 2 кг мяса?
9.Найдите закономерность и вставьте пропущенное число.

10.Какое число лишнее?

9,7,4,1,3,7.
11.Из 5 палочек нужно построить 2 треугольника.

12. Из семи палочек нужно сложить 3 треугольника.

13.Запиши такие двузначные числа, где сумма десятков и единиц равна 5.

Пример:14,23,32,50,41
14.Запиши такие двузначные числа, в которых разность между числом десятков и единиц равна 6.

Пример 93,82,71,60

15.Установи закономерность и найди недостающее число:

а) 2 5 7 6 1 7 1 4 ? (5)

б) 2 5 9 4 7 3 6 12 ? (12) и т.д.

Комплекс интеллектуальных игр для развития логического мышления детей Игровой тренинг мышления полезен всем учащимся, в особенности тем, которые испытывают заметные трудности в выполнении различных видов учебной работы: понимании и осмыслении нового материала, его запоминании и усвоении, установления связей между различными явлениями, выражении своих мыслей в речи. Комплекс интеллектуальных игр позволяет развивать и совершенствовать мышление. В играх используются задания, составленные на основе простого, хорошо знакомого материала.
Игры:
1.«Составление предложений».

Детям предлагается три слова не связанные между собой по смыслу, например: «карандаш», «треугольник», «ученик».

Задание: составить как можно больше предложений, которые бы обязательно включали все эти три слова. По времени отводится примерно 10 минут. Эта игра развивает способность устанавливать связимежду предметами и явлениями, творчески мыслить, создавать новые целостные образы из разрушенных предметов.

2.«Поиск общих свойств».

Детям предлагаются два слова, мало связанные между собой. За 10 минут они должны написать как можно больше общих признаков для этих объектов.

Например, «ведро», «воздушный шарик». В игре побеждает тот, у кого список общих признаков больше, длиннее. Эта работа необходима для того. Чтобы дети научились вскрывать связи между предметами, а также предельно четко усвоили, что такое существенные и несущественные признаки предметов.

  1. «Что лишнее?»

Детям предлагаются любые три слова:

Задание: из предложенных трех слов надо оставить только те два, которые имеют в чем-то сходные свойства, а одно слово – «лишнее», оно не обладает этим общим признаком, поэтому его следует исключить.

Пример: шесть, восемнадцать, восемьдесят один.

  1. Эта игра развивает способности описывать свойства, сравнивать по определенным параметрам, устанавливать связи, а также переходить от одних связей к другим. Игра формирует установку на то, что возможны совершенно разные способы объединения и расчленения некоторой группы, а поэтому не следует ограничиваться каким-то одним решением. Решений может быть целое множество. Эта игра,

следовательно, учит мыслить творчески.

  1. «Поиск предмета (чисел и т.д.), обладающих сходными свойствами».

Пишется на доске слово. Например: «квадрат». Время на выполнение этого задания

ограничено 5-10 минут.

Задание: необходимо написать как можно больше предметов (чего-либо), являющихся аналогом данного слова и указать по какому именно свойству он имеет сходство с названным. Эта игра учит выделять в предмете самые разнообразные свойства, а также оперировать в отдельности каждым из них, формирует способность классифицировать явления (формы и т.д.) по их признакам.

6. «Поиск предметов с противоположными свойствами».

Например слово «круг».

Задание детям: напиши как можно больше слов, которые противоположны по признакам записанному на доске.

Эта игра формирует способность изучать свойства, знакомит с такой категорией, как противоположность, что очень важно для развития интеллектуальных способностей ребенка.

В работе можно также использовать и другие игры, например:

«Поиск предметов (чего – либо) по заданным признакам»,

«Поиск элементов, объединяющих данные элементы»,

«Поиск способов применения элементов»,

«Учимся формировать определения»,

«Учимся выражать мысли другими словами» и т.д.



Список использованной литературы

  1. Петерсон Л.Г. Математика. 1-4 класс. Издательство.: «Ювента», 2010.

  2. Истомина Н.Б., учебное пособие, «Методика обучения математике в начальной школе», 2000г

  3. Орлова Е.В., Воровщиков Сергей, Каюда Г.П. «Как эффективно развивать логическое мышление младших школьников». Издательство: 5ЗА ЗНАНИЯ, 2008г.

  4. Инна Светлова «Логика». Издательство: Эксмо, 2004г.

  5. Журналы «Начальная школа».

  6. Издательство «Академия», «И учеба, и игра; математика»

  7. Л.М, Шведова «Открой в себе гения. Развитие логического мышления и интеллекта». Издательство: БАО, 2007г.

  8. Издательство «Академия», «Развитие творческого мышления детей».

  9. Практическое приложение: «Играем в числа»

  10. Смирнов С.А., учебное пособие: «Педагогические теории, системы, технологии», 2000 г.









Автор
Дата добавления 29.11.2015
Раздел Начальные классы
Подраздел Другие методич. материалы
Просмотров777
Номер материала ДВ-208839
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх