181287
столько раз учителя, ученики и родители
посетили официальный сайт ООО «Инфоурок»
за прошедшие 24 часа
Добавить материал и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015

Скидка 0%

112 курсов профессиональной переподготовки от 3540 руб.

268 курсов повышения квалификации от 840 руб.

МОСКОВСКИЕ ДОКУМЕНТЫ ДЛЯ АТТЕСТАЦИИ

Лицензия на осуществление образовательной деятельности №038767 выдана 26 сентября 2017 г. Департаменотом образования города Москвы

Инфоурок Математика ПрезентацииПрезентация по математике "Парадокс игры в кости"

Презентация по математике "Парадокс игры в кости"

библиотека
материалов
Иордан Ирина Ивановна МБОУ СОШ №50 Новосибирск-2015 Парадокс игры в кости "Сл...
История парадокса Игра в кости была самой популярной азартной игрой до конца...
Самой ранней книгой по теории вероятностей является «Книга об игре в кости» (...
Видимо, поэтому Галилей стал заниматься той же самой задачей о костях, хотя о...
Парадокс Правильная игральная кость при бросании с равными шансами падает на...
Объяснение парадокса Задача настолько проста, что кажется странным, что в сво...

Описание презентации по отдельным слайдам:

1 слайд Иордан Ирина Ивановна МБОУ СОШ №50 Новосибирск-2015 Парадокс игры в кости "Сл
Описание слайда:

Иордан Ирина Ивановна МБОУ СОШ №50 Новосибирск-2015 Парадокс игры в кости "Случай играет в мире столь большую роль, что обыкновенно я стараюсь отвести ему как можно меньше места в уверенности, что и без моей помощи он позаботится о себе" А. Дюма

2 слайд История парадокса Игра в кости была самой популярной азартной игрой до конца
Описание слайда:

История парадокса Игра в кости была самой популярной азартной игрой до конца средних веков. Само слово «азарт» также относится к игре в кости, так как оно происходит от арабского слова «alzar», переводимого как «игральная кость». Карточные игры стали популярны в Европе лишь в XIV веке, в то время как игра в кости пользовалась успехом еще в Древнем Египте во времена 1-й династии и позднее в Греции, а также в Римской империи. Кости были придуманы очень давно, они были разной формы, конфигурации. Игральная кость - это случайность в чистом виде!

3 слайд Самой ранней книгой по теории вероятностей является «Книга об игре в кости» (
Описание слайда:

Самой ранней книгой по теории вероятностей является «Книга об игре в кости» («De Ludo Aleae») Джероламо Кардано (1501—1576 гг.), которая в основном посвящена игре в кости. Эта небольшая книжка была опубликована лишь в 1663 г., спустя почти 100 лет после того, как была написана. Джероламо Кардано (1501-1576) — итальянский математик, инженер, философ, медик и астролог, изобретатель карданного вала. В историю криптографии Кардано вошёл как изобретатель несложного шифровального устройства, получившего название «решётка Кардано» (квадрат с вырезанными клетками). Опубликовано также (посмертно) его математическое исследование по теории азартных игр — один из первых серьёзных трудов по теории вероятностей; в нём, однако, Кардано допустил немало ошибок.

4 слайд Видимо, поэтому Галилей стал заниматься той же самой задачей о костях, хотя о
Описание слайда:

Видимо, поэтому Галилей стал заниматься той же самой задачей о костях, хотя она была уже решена в работе Кардано. Галилей также написал трактат на эту тему где-то между 1613 и 1624 гг. Первоначально он назывался «Об открытиях, совершенных при игре в кости» («Sopra le Scoperte dei Dadi»), но в собрании сочинений Галилея, изданном в 1718 г., название изменили на следующее: «О выходе очков при игре в кости» («Consideratione sopra il Giuoco dei Dadi»). Галилео Галилей (1564-1642) — итальянский физик, механик, астроном, философ и математик, оказавший значительное влияние на науку своего времени. Он первым использовал телескоп для наблюдения небесных тел и сделал ряд выдающихся астрономических открытий. Галилей — основатель экспериментальной физики. К теории вероятности относится его исследование об исходах при бросании игральных костей.

5 слайд Парадокс Правильная игральная кость при бросании с равными шансами падает на
Описание слайда:

Парадокс Правильная игральная кость при бросании с равными шансами падает на любую из граней 1, 2, 3, 4, 5 или 6. В случае бросания двух костей сумма выпавших чисел заключена между 2 и 12. Как 9, так и 10 из чисел 1, 2, ..., 6 можно получить двумя разными способами: 9 = 3 + 6 = 4 + 5 и 10 = 4 + 6 = 5 + 5. В задаче с тремя костями и 9, и 10 получаются шестью способами. Почему тогда 9 появляется чаще, когда бросают две кости, а 10, когда бросают три?

6 слайд Объяснение парадокса Задача настолько проста, что кажется странным, что в сво
Описание слайда:

Объяснение парадокса Задача настолько проста, что кажется странным, что в свое время ее считали страшно трудной. И Кардано, и Галилей отмечали необходимость учета порядка выпадания чисел (в противном случае не все исходы были бы равновозможными). В случае двух костей 9 и 10 могут получаться следующим образом: 9 = 3 + 6 = 6 + 3 = 4 + 5 = 5 + 4 и 10 = 4 + 6 = 6 + 4 = 5 + 5. Это означает, что в задаче с двумя костями 9 можно «выбросить» четырьмя способами, а 10 — лишь тремя. Следовательно, шансы получить 9 предпочтительней. Поскольку две кости дают 6 x 6 = 36 различных равновозможных пар чисел, шансы получить 9 равны 4/36, а для 10 — лишь 3/36. В случае трех костей ситуация меняется на противоположную: 9 можно «выбросить» 25 способами, а 10 — уже 26 способами. Так что 10 более вероятно, чем 9.

Курс профессиональной переподготовки
Учитель математики
Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:
также Вы можете выбрать тип материала:
Общая информация
ВНИМАНИЮ УЧИТЕЛЕЙ: хотите организовать и вести кружок по ментальной арифметике в своей школе? Спрос на данную методику постоянно растёт, а Вам для её освоения достаточно будет пройти один курс повышения квалификации (72 часа) прямо в Вашем личном кабинете на сайте "Инфоурок".

Пройдя курс Вы получите:
- Удостоверение о повышении квалификации;
- Подробный план уроков (150 стр.);
- Задачник для обучающихся (83 стр.);
- Вводную тетрадь «Знакомство со счетами и правилами»;
- БЕСПЛАТНЫЙ доступ к CRM-системе, Личному кабинету для проведения занятий;
- Возможность дополнительного источника дохода (до 60.000 руб. в месяц)!

Пройдите дистанционный курс «Ментальная арифметика» на проекте "Инфоурок"!

Подать заявку

Вам будут интересны эти курсы:

Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.