1156725
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 70%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаПрезентацииПрезентация по математике "Теорема о неявной функции в решении задач с параметрами"

Презентация по математике "Теорема о неявной функции в решении задач с параметрами"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Теорема о неявной функции Мельник П.И ФМиКН, 5 курс
Теорема о неявной функции Целеполагание Задача Параметр
Выразить одну переменную через другую: Вхождение в тему Математическая размин...
Организация учащихся Холодные числа, внешне сухие формулы математики полны вн...
Теорема о неявной функции Определим функцию у = f(x) следующим образом: пусть...
Пусть f(a,x)=ax2+(a+1)x+1, тогда f(a,x) – непрерывна как многочлен. Чтобы фун...
Практикум Пример2. Решить уравнение 22x-(2a+1) 2x+a2+a=0. Решение. Пусть f(a,...
Практикум Пример2. Решить уравнение 22x-(2a+1) 2x+a2+a=0. Решение. 	 Ответ: Т...
Задание для самостоятельного решения Решение. Пусть f(a,x)=a sinx-1, тогда f(...
Домашнее задание Найти хотя бы одно решение   Подведение игогов, рефлексия Мы...

Описание презентации по отдельным слайдам:

1 слайд Теорема о неявной функции Мельник П.И ФМиКН, 5 курс
Описание слайда:

Теорема о неявной функции Мельник П.И ФМиКН, 5 курс

2 слайд Теорема о неявной функции Целеполагание Задача Параметр
Описание слайда:

Теорема о неявной функции Целеполагание Задача Параметр

3 слайд Выразить одну переменную через другую: Вхождение в тему Математическая размин
Описание слайда:

Выразить одну переменную через другую: Вхождение в тему Математическая разминка 2)Вычислить производную Теорема о неявной функции

4 слайд Организация учащихся Холодные числа, внешне сухие формулы математики полны вн
Описание слайда:

Организация учащихся Холодные числа, внешне сухие формулы математики полны внутренней красоты  и жара сконцентрированной в них мысли. А.Д. Александров Теорема о неявной функции

5 слайд Теорема о неявной функции Определим функцию у = f(x) следующим образом: пусть
Описание слайда:

Теорема о неявной функции Определим функцию у = f(x) следующим образом: пусть каждому значению переменной х из некоторого множества поставлено в соответствие некоторое число у, такое что F(x; y) = 0. Такой способ задания называется неявным способом задания функции у = f(x), а сама эта функция – неявной функцией. Простейшая теорема о неявной функции состоит в следующем: Если функция F: R×R→R непрерывна в некоторой окрестности точки (x0,y0) F(x0,y0)=0  и при фиксированном x, функция F(x,y) строго монотонна по y в данной окрестности, тогда найдётся такой двумерный промежуток I=Ix×Iy  , являющийся окрестностью точки (x0,y0 )и такая непрерывная функцияf: Ix→Iy  , что для любой точки (x,y)∈I,F(x,y)=0 ↔y=f(x). Теорема о неявной функции Освоение новых знаний

6 слайд Пусть f(a,x)=ax2+(a+1)x+1, тогда f(a,x) – непрерывна как многочлен. Чтобы фун
Описание слайда:

Пусть f(a,x)=ax2+(a+1)x+1, тогда f(a,x) – непрерывна как многочлен. Чтобы функция была монотонна достаточно, чтобы ее производная по x не равнялась нулю. Пример 1. Решить уравнение ax2+(a+1)x+1=0 Практикум ax2+(a+1)x+1=0 D=a2+2a+1-4a=a2-2a+1=(a-1)2 Ответ: x1=-1,x2=-1/a Теорема о неявной функции f '(a,x)=2ax+a+1, то есть в окрестности точки (0;0) функция f(a,x) – непрерывна и монотонна, тогда по теореме о неявной функции, в окрестности взятой точки найдется такая непрерывная функция f(a,x)=0 ↔ x=f(a). Т.е. в окрестности точки(0;0) исходное уравнение имеет корни: x1=-1,x2=-1/a. Т.к функция f(a,x) непрерывна на всей вещественной оси, то решения x1=-1,x2=-1/a будут решениями уравнения в любой точке.

7 слайд Практикум Пример2. Решить уравнение 22x-(2a+1) 2x+a2+a=0. Решение. Пусть f(a,
Описание слайда:

Практикум Пример2. Решить уравнение 22x-(2a+1) 2x+a2+a=0. Решение. Пусть f(a,x)=22x-(2a+1)2x+a2+a тогда f(a,x) – непрерывна как многочлен. Чтобы функция была монотонна достаточно, чтобы ее производная по не равнялась нулю. то есть в окрестности точки (0,0) функция f(a,x) – непрерывна и монотонна, тогда по теореме о неявной функции, в окрестности взятой точки найдется такая непрерывная функция f(a,x)=0 ↔ x=f(a). 22x-(2a+1) 2x+a2+a=0, Пусть 2x=t, t>0, тогда Теорема о неявной функции

8 слайд Практикум Пример2. Решить уравнение 22x-(2a+1) 2x+a2+a=0. Решение. 	 Ответ: Т
Описание слайда:

Практикум Пример2. Решить уравнение 22x-(2a+1) 2x+a2+a=0. Решение. Ответ: Теорема о неявной функции , .

9 слайд Задание для самостоятельного решения Решение. Пусть f(a,x)=a sinx-1, тогда f(
Описание слайда:

Задание для самостоятельного решения Решение. Пусть f(a,x)=a sinx-1, тогда f(a,x) – непрерывна как многочлен. Чтобы функция была монотонна достаточно, чтобы ее производная по x не равнялась нулю. f '(a,x)=a cosx; x≠π/2+πn, n∈Z, a∈R, то есть в окрестности точки (0,1) функция f(a,x) – непрерывна и монотонна, тогда по теореме о неявной функции, в окрестности взятой точки найдется такая непрерывная функция f(a,x)=0 ↔ x=f(a). Ответ: Проверка полученных результатов Решить уравнение a sin x=1 Теорема о неявной функции

10 слайд Домашнее задание Найти хотя бы одно решение   Подведение игогов, рефлексия Мы
Описание слайда:

Домашнее задание Найти хотя бы одно решение   Подведение игогов, рефлексия Мы с наслаждением познаём математику… Она восхищает нас, как цветок лотоса. Аристотель Получили ли вы наслаждение на уроке? Теорема о неявной функции

Общая информация

Номер материала: ДБ-126890

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.