Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / РАБОЧАЯ ПРОГРАММА ЭЛЕКТИВНОГО КУРСА ПО МАТЕМАТИКЕ 10 КЛАСС
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

РАБОЧАЯ ПРОГРАММА ЭЛЕКТИВНОГО КУРСА ПО МАТЕМАТИКЕ 10 КЛАСС

библиотека
материалов

Рабочая программа элективного курса по математике в 10 классе «Решение нестандартных задач» составлена на основании следующих нормативно-правовых документов:

  1. Федерального компонента государственного стандарта основного общего образования по математике, утвержденного приказом Минобразования России от 5.03.2004 г. № 1089.

  2. Законом Российской Федерации «Об образовании» (статья 7, 9, 32).

Главная цель предлагаемой программы заключается не только в подготовке к вступительному экзамену, и в овладении определённым объём знаний, готовых методов решения нестандартных задач, но и в том, чтобы научить самостоятельно мыслить,творчески подходить к любой проблеме.

Элективный курс "Решение нестандартных задач" рассчитан на 35 часов. Данная программа курса сможет привлечь внимание учащихся, которым интересна математика, кому она понадобится при учебе, подготовке к ЕГЭ.

Пояснительная записка

Рабочая программа элективного курса по математике в 10 классе «Решение нестандартных задач» составлена на основании следующих нормативно-правовых документов:

  1. Федерального компонента государственного стандарта основного общего образования по математике, утвержденного приказом Минобразования России от 5.03.2004 г. № 1089.

  2. Законом Российской Федерации «Об образовании» (статья 7, 9, 32).

Главная цель предлагаемой программы заключается не только в подготовке к вступительному экзамену, и в овладении определённым объём знаний, готовых методов решения нестандартных задач, но и в том, чтобы научить самостоятельно мыслить,творчески подходить к любой проблеме.

Элективный курс "Решение нестандартных задач" рассчитан на 35 часов. Данная программа курса сможет привлечь внимание учащихся, которым интересна математика, кому она понадобится при учебе, подготовке к ЕГЭ.

Данный курс имеет прикладное и общеобразовательное значение, способствует развитию логического мышления учащихся, систематизации знаний при подготовке к выпускным экзаменам. Используются различные формы организации занятий, такие как лекция и семинар, групповая, индивидуальная деятельность учащихся. Результатом предложенного курса должна быть успешная сдача ЕГЭ.

Цели курса:

  • На основе коррекции базовых математических знаний учащихся за курс 5 – 9 классов совершенствовать математическую культуру и творческие способности учащихся. Расширение и углубление знаний, полученных при изучении курса алгебры.

  • Закрепление теоретических знаний; развитие практических навыков и умений. Умение применять полученные навыки при решении нестандартных задач в других дисциплинах.

  • Создание условий для формирования и развития у обучающихся навыков анализа и систематизации, полученных ранее знаний; подготовка к итоговой аттестации в форме ЕГЭ.

Задачи курса:

  • Реализация индивидуализации обучения; удовлетворение образовательных потребностей школьников по алгебре. Формирование устойчивого интереса учащихся к предмету.

  • Выявление и развитие их математических способностей.

  • Подготовка к обучению в ВУЗе.

  • Обеспечение усвоения обучающимися наиболее общих приемов и способов решения задач. Развитие умений самостоятельно анализировать и решать задачи по образцу и в незнакомой ситуации;

  • Формирование и развитие аналитического и логического мышления.

  • Расширение математического представления учащихся по определённым темам, включённым в программы вступительных экзаменов в другие типы учебных заведений.

  • Развитие коммуникативных и общеучебных навыков, навыков самостоятельной работы, умений вести дискуссию, аргументировать ответы.

Виды деятельности на занятиях:

лекция учителя, беседа, практикум, консультация, ИКТ технологии.

Умения и навыки учащихся, формируемые элективным курсом:

  • навык самостоятельной работы с таблицами и справочной литературой;

  • составление алгоритмов решения типичных задач;

  • умения решения тригонометрических, показательных уравнений и неравенств;

  • исследования элементарных функций при решения задач различных типов.

 

Требования к уровню подготовки

Выполнение практических занятий имеет целью закрепить у учащихся теоретические знания и развить практические навыки и умения в области алгебры, и успешной сдачи ЕГЭ по математике.

  • Учащиеся должны знать, что такое проценты и сложные проценты, основное свойство пропорции.

  • Знать схему решения линейных, квадратных, дробно-рациональных, иррациональных уравнений.

  • Знать способы решения систем уравнений.

  • Знать определение параметра; примеры уравнений с параметром; основные типы задач с параметрами; основные способы решения задач с параметрами. Знать определение линейного уравнения и неравенства с параметрами. Алгоритмы решения линейных уравнений и неравенств с параметрами графическим способом. Определение квадратного уравнения и неравенства с параметрами. Алгоритмы решения квадратного уравнения и неравенства с параметрами графическим способом

  • проводить тождественные преобразования иррациональных, показательных,   тригонометрических выражений.

  • решать иррациональные,   тригонометрические уравнения и неравенства.

  • решать системы уравнений изученными методами.

  • строить графики элементарных функций и проводить преобразования графиков, используя изученные методы.

  • применять аппарат математического анализа к решению задач.

  • применять основные методы геометрии (проектирования, преобразований, векторный, координатный) к решению геометрических задач.

  • Уметь применять вышеуказанные знания на практике.

Формы контроля уровня достижений учащихся и критерии оценки

  1. Текущий контроль: практическая работа, самостоятельная работа.

  2. Тематический контроль: тест.

  3. Итоговый контроль: итоговый тест.

 

Содержание

Тема 1. Текстовые задачи (9часов)

Простейшие текстовые задачи. Основные свойства, прямо и обратно пропорциональные величины. Проценты, округление с избытком, округление с недостатком. Выбор оптимального варианта. Выбор варианта из двух возможных Выбор варианта из трех возможных Выбор варианта из четырех возможных. Текстовые задачи на проценты, сплавы и смеси, на движение, на совместную работу.

Тема 2. Тригонометрия (6 часов) Вычисление значений тригонометрических выражений. Преобразования числовых тригонометрических выражений. Преобразования буквенных тригонометрических выражений. Тригонометрические уравнения и неравенства. Простейшие тригонометрические уравнения. Два метода решения тригонометрических уравнений: введение новой переменной и разложение на множители. Однородные тригонометрические уравнения.

Тема 3. Планиметрия (6 часов)

Треугольник. Параллелограмм, прямоугольник, ромб, квадрат. Трапеция. Окружность и круг. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Многоугольник. Сумма углов выпуклого многоугольника. Правильные многоугольники. Вписанная окружность и описанная окружность правильного многоугольника. Координатная плоскость. Векторы. Вычисление длин и площадей.

Тема 4. Стереометрия (8 часов)

Призма, ее основания, боковые ребра, высота, боковая поверхность; прямая призма; правильная призма. Параллелепипед; куб; симметрии в кубе, в параллелепипеде. Пирамида, ее основание, боковые ребра, высота, боковая поверхность; треугольная пирамида; правильная пирамида. Сечения куба, призмы, пирамиды.

Величина угла, градусная мера угла, соответствие между величиной угла и длиной дуги окружности. Угол между прямыми в пространстве; угол между прямой и плоскостью, угол между плоскостями. Расстояние от точки до прямой, от точки до плоскости; расстояние между параллельными и скрещивающимися прямыми, расстояние между параллельными плоскостями. Площадь поверхности составного многогранника.

Тема 5. Производная (6 часов)

Понятие о производной функции, геометрический смысл производной. Физический смысл производной, нахождение скорости для процесса, заданного формулой или графиком. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Вторая производная и ее физический смысл. Исследование функций.Применение производной к исследованию функций и построению графиков. Наибольшее и наименьшее значение функций Исследование тригонометрических функций.

Календарно – тематический план

урока

Наименование   разделов и тем

Коли

чество часов

Дата

по плану

Дата по

факту

 

Текстовые задачи (9часов)

 

 

 

Простейшие текстовые задачи

2

 

 

 

Выбор оптимального варианта

2

 

 

 

Текстовые задачи на проценты, сплавы и   смеси

2

 

 

 

Текстовые задачи на движение и   совместную работу

3

 

 

 

Тригонометрия   (6 часов)

 

 

 

Преобразования числовых и буквенных   тригонометрических выражений.

3

 

 

 

Методы решения тригонометрических   уравнений

3

 

 

 

Планиметрия (6 часов)

 

 

 

Вычисление длин и площадей

2

 

 

 

Задачи, связанные с углами

2

 

 

 

Углы и расстояния в пространстве

2

 

 

 

Стереометрия   (8 часов)

 

 

 

Параллелепипед, куб

2

 

 

 

Призма

2

 

 

 

Пирамида

2

 

 

 

Составные многогранники

2

 

 

 

Производная   (6 часов)

 

 

 

Применение производной к исследованию   функций

3

 

 

 

Исследование тригонометрических функций

3

 

 

 

Итого  

35

 

 

 

  

Учебно-методическое обеспечение

1. Шарыгин И.Ф. Факультативный курс по математике. Решение задач – М. – «Просвещение» 2008

2. Гольдич В.А. Алгебра. Решение уравнений и неравенств. - СПб.: Литера, 2008

3. Кодификатор, спецификация заданий ЕГЭ 2013 -2014 г.










Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 18.11.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров285
Номер материала ДВ-169201
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх