Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по алгебре и началам анализа к учебнику Колмогорова ( 10 класс)

Рабочая программа по алгебре и началам анализа к учебнику Колмогорова ( 10 класс)

  • Математика

Поделитесь материалом с коллегами:




  1. Пояснительная записка


Общая характеристика программы

Рабочая программа по математике для 10 класса составлена на основе федерального компонента Государстенного стандарта основного общего образования и ориентирована на использование учебника Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. Алгебра и начала математического анализа: Учебник для 10-11классов общеобразовательных учреждений(М.: Мнемозина)

Цели обучения по предмету «Алгебра и начала математического анализа»

  • Овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин, продолжения образования;

  • Интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • Воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, формирование понимания значимости математики для научно-технического прогресса


  1. Содержание курса


Тригонометрические функции числового аргумента. Синус, косинус, тангенс и котангенс действительного числа. Тригонометрические функции и их графики. Тригонометрические функции любого угла. Синус, косинус, тангенс и котангенс произвольного угла. Радианная мера угла. Основные тригонометрические формулы. Основные тригонометрические тождества.Формулы приведения. Преобразование простейших тригонометрических выражений.Формулы сложения и их следствия. Синус, косинус и тангенс суммы и разности двух аргументов. Синус и косинус двойного аргумента. Формулы половинного аргумента. Преобразование суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразование простейших тригонометрических выражений. Основные свойства функций. Функции и их графики. Свойства функций: монотонность, четность и нечетность, периодичность. Возрастание и убывание функций. Экстремумы. Исследование функций. Гармонические колебания. Решение тригонометрических уравнений и неравенств.Арксинус, арккосинус, арктангенс числа. Решение тригонометрических уравнений, неравенств и их систем. Призводная.Приращение функции. Понятие о производной. Непрерывность функции. Предельный переход. Правила вычисления производных. Производная сложной функции. Производные тригонометрических функций. Применения непрерывности и призводной. Использование непрерывности функций при решении неравенств. Метод интервалов. Уравнение касательной к графику функции. Приближенные вычисления. Применение производной в физике и технике.Применение производной к исследованию функции. Применения производной к исследованию функций и построению их графиков. Отыскание наибольшего и наименьшего значений функции с помощью производной.




Личностные, метапредметные и предметные результаты освоения.


Личностными результатами изучения предмета «Алгебра и начала анализа» в 10 классе являются следующие умения:

· осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки;

· постепенно выстраивать собственное целостное мировоззрение: осознавать потребность и готовность к самообразованию, в том числе и в рамках самостоятельной деятельности вне школы;

Метапредметными результатами изучения курса «Алгебра и начала анализа» является формирование универсальных учебных действий (УУД).


Регулятивные УУД:

· самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности;

· выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных и искать самостоятельно средства достижения цели;

· составлять (индивидуально или в группе) план решения проблемы;

· работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно;

· в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.


Познавательные УУД:

· анализировать, сравнивать, классифицировать и обобщать факты и явления. Выявлять причины и следствия простых явлений.

· осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;

· строить логическое рассуждение, включающее установление причинно-следственных связей.

· создавать схематические модели с выделением существенных характеристик объекта.

· составлять тезисы, различные виды планов (простых, сложных и т.п.).

· преобразовывать информацию из одного вида в другой (таблицу в текст и пр.).

· уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.


Коммуникативные УУД:

Самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т.д.).











Основные требования к уровню подготовки учащихся

Учащиеся должны знать/ понимать:

Значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

Значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

Универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

Вероятностный характер различных процессов окружающего мира.

Алгебра

Учащиеся должны уметь:

Выполнять арифметические действия, сочетая устные и письменные приемы, применяя вычислительные устройства; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

Проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

Вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования.

Учащиеся должны использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

Расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, обращаясь при необходимости к справочным материалам и применяя простейшие вычислительные устройства.

Функции и графики

Учащиеся должны уметь:

Определять значение функции по значению аргумента при различных способах задания функции;

Строить графики изученных функций;

Описывать по графику и в простейших случаях по формуле поведение и свойства функции;

Находить по графику функции наибольшие и наименьшие значения;

Решать уравнения, простейшие системы уравнений, используя свойства функций и их графики;

Исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа.

Учащиеся должны использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

Описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.

Начала математического анализа

Учащиеся должны уметь:

Вычислять производные и первообразные элементарных функций, используя справочные материалы;

Вычислять в простейших случаях площади с использованием первообразной.

Учащиеся должны использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

Решения прикладных задач, в том числе социально-экономических и физических, на вычисление наибольших и наименьших значений, на нахождение скорости и ускорения.

Уравнения и неравенства

Учащиеся должны уметь:

Решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;

Составлять уравнения и неравенства по условию задачи;

Использовать графический метод для приближенного решения уравнений и неравенств;

Изображать на координатной плоскости множества решений простейших уравнений и их систем.

Учащиеся должны использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

Построения и исследования простейших математических моделей.

Элементы комбинаторики, статистики и теории вероятностей

Учащиеся должны уметь:

Решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;

Вычислять в простейших случаях вероятности событий на основе подсчета числа исходов.

Учащиеся должны использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

Анализа реальных числовых данных, представленных в виде диаграмм, графиков;

Анализа информации статистического характера.






















Календарно-тематическое планирование 10 класс

п/п

Дата проведения

Наименование разделов и тем

Деятельность на уроке

Домашнее задание

примечание

план

факт

Глава I. Тригонометрические функции числового аргумента (9 часов)

Цель:

- формирование представления о числовой окружности, о числовой окружности на координатной плоскости, о формулах синуса, косинуса, тангенса суммы и разности аргумента, формулы двойного аргумента, формулы половинного угла, формулы понижений степени;

- формирование умения находить значение синуса, косинуса, тангенса и котангенса на числовой окружности, применение этих формул, а также формулы преобразования суммы тригонометрических функций в произведение и формулы преобразования произведения тригонометрических функций в сумму;

- овладение умением применять тригонометрические функции числового аргумента, при преобразовании тригонометрических выражений

- расширение и обобщение сведений о преобразовании тригонометрических выражении с применением различных формул.


1

02.09


Синус, косинус, тангенс и котангенс. Основные формулы тригонометрии

Знать:

- определения радиана, синуса, косинуса, тангенса, котангенса;

- основное тригонометрическое тождество;

- область значений для синуса, косинуса, тангенса и котангенса.

Уметь:

- переводить градусы в радианы и наоборот;

- использовать таблицу значений тригонометрических функций для решения задач;

- использовать основное тригонометрическое тождество.

п. 1 № 1, 2, 3, 5 – (в, г)


2

05.09


Синус, косинус, тангенс и котангенс. Основные формулы тригонометрии

Знать:

- основные тригонометрические тождества;

- формулы сложения, суммы и разности синусов (косинусов), двойного угла, половинного аргумента.

Уметь:

- использовать значения синуса, косинуса, тангенса и котангенса;

- определять знаки синуса, косинуса, тангенса и котангенса по значению угла;

- решать задачи.

п. 1 (2) № 7 (в, г), 10 (б)


3

07.09


Синус, косинус, тангенс и котангенс. Основные формулы тригонометрии

Знать:

- общий вид формул приведения;

- мнемоническое правило для записи формул приведения.

Уметь:

- использовать формулы приведения для решения задач.

п. 1 (2) № 12, 13 – (б), 27 (в, г)


4

09.09


Синус, косинус, тангенс и котангенс. Основные формулы тригонометрии

Знать:

- определения синуса, косинуса, тангенса и котангенса;

- основные тригонометрические формулы.

Уметь:

- применять их при решении задач.

п. 1 № 24, 21 (а, б)


5

12.09


Преобразование тригонометрических выражений

Знать:

- определение функций синуса, косинуса, тангенса и котангенса;

- их область определения и область значений;

- тождества четности и периодичности для синуса и косинуса.

Уметь:

- определять расположение точки на единичной окружности, если известно α.

- знаки синуса, косинуса, тангенса и котангенса.

п. 2 (1) № 30, 31, 34 – (а, б)


6

14.09


Преобразование тригонометрических выражений

Знать:

-определения функций у = sinx и у = cosx;

- область определения и область значений этих функций, что такое синусоида и линия синусов;

Уметь:

- строить графики функций у = sinx и у = cosx;

- находить область определения и область значений различных функций по графиком.

п. 2 (1,2) № 33 (а), 36 (г), 37 (г)


7

16.09


Преобразование тригонометрических выражений

Знать:

- определения тангенса и котангенса;

- область определения и область значений этих функций, что такое тангенсоида и линия тангенсов;

- свойство четности функций у = tgх и у = ctgх и периодичности.

п. 2 (3) № 38 (в, г), 39 (в)


8

19.09


Преобразование тригонометрических выражений

Уметь:

- пользоваться основными тригонометрическими формулами.

п. 2 №25 (б, в, г)


9

21.09


Контрольная работа № 1. Тригонометрические формулы.

Уметь:

- пользоваться основными тригонометрическими формулами.



Глава II. Основные свойства функций (20 часов)


10


23.09


Анализ контрольной работы. Числовая функция

Знать:

- определение числовой функции;

- области определения и области значений функции.

Уметь:

- находить значение функции при определенном значении аргумента, области определения и области значений функции.

п. 3 (1) № 40 (а, б), 43 (а, б), 44 (а, б)


11

26.09


Преобразования

графиков

Знать:

- что такое график функции;

- виды преобразований графиков функций.

Уметь:

- выполнять построение графиков функций;

- преобразование графиков функций;

- находить области определения и области значений функции.

п. 3 № 48 (г), 50 ( в, г)


12

28.09


Функции и их графики

Знать:

- определения функции, графики функции, области определения и области значений функции;

- правила для преобразования графиков.

Уметь:

- находить области определения и области значений функции;

- выполнять преобразование графиков;

- строить графики элементарных функций.

п. 3 № 53 (а, б), 56 (в, б)


13

30.09


Четные и нечетные функции

Знать:

- определения четной и нечетной функций;

- свойства графиков четной и нечетной функций.

Уметь:

- определять, какие функции являются четными, какие – нечетными, какие не являются ни четными, ни нечетными.

п. 4 (1) № 58, 60


14

03.10


Периодические функции

Знать:

- какие функции называются периодическими, наименьший положительный период для тригонометрических функций;

- правило периодических функций, как находится период для функции у=Аf(kx+b).

Уметь:

- доказывать периодичность функций;

- находить наименьший положительный период периодических функций.

п. 4 № 64 (а, б), 65 (а, б)


15

05.10


Четные, нечетные, периодические функции

Знать:

- определения четной, нечетной, периодической функций.

Уметь:

- определять эти свойства функций по формулам и по графикам.

п. 4 № 66 (а, б), 67 (а, б)


16

07.10


Четные, нечетные, периодические функции

Знать:

- основные свойства тригонометрических функций.

Уметь:

- выполнять преобразования графиков, определять свойства функций.

п. 4 № 74 (в, г), 70


17

10.10


Возрастание и убывание функций. Экстремумы

Знать:

- определения возрастная, убывания функций, окрестности точки, точек экстремума, максимума и минимума функции.

Уметь:

- находить промежутки возрастания, убывания, точки максимума и минимума функции.

п. 5 (1,3) № 80 (в, г), 78 (в, а)



18

12.10


Возрастание, убывание, экстремумы тригонометрических функций.

Знать:

- определение возрастания, убывания, экстремумов функции;

- промежутки возрастания, убывания тригонометрических функций;

- их точки максимума и минимума.

Уметь:

- находить промежутки возрастания, убывания, точки максимума и минимума функции.

п. 5 № 84 (а, б), 89 (а, в)


19

14.10


Возрастание, убывание, экстремумы функции.

Знать:

- определения возрастания, убывания, экстремумов функции;

Уметь:

- находить промежутки возрастания, убывания, точки максимума и минимума функции;

- применять свойства функций для решения задач.

п. 5 № 86 (в, г), 87 (г), 90 (а, б)


20

17.10


Возрастание, убывание, экстремумы функции.

Знать:

- определения возрастания, убывания, точек экстремума функций.

Уметь:

- определять основные свойства функций по графикам;

- выполнять преобразование графиков.

п. 5 № 88 (в, г), 83 (в, г)


21

19.10


Исследование функций

Знать:

- основные свойства функций;

- схему исследования функций, что такое асимптоты.

Уметь:

- проводить исследование функции, заданной графиком;

- строить график функции, если известны ее свойства.

п. 6 № 93 (в), 94 (в)


22

21.10


Исследование функций

Знать:

- общую схему исследования функций;

- свойства функций.

Уметь:

- проводить исследование функций;

- строить график функции по известным свойствам.

п. 6 № 95 (г), 99 (в)


23

24.10


Исследование функций

Знать:

- определения свойств функций;

- общую схему исследования функций.

Уметь:

- определять свойства функций;

- проводить исследование функций;

- строить график функции по известным свойствам.

п. 6 № 98 (а), 99 (а)


24

26.10


Исследование тригонометрических функций

Знать:

- свойства тригонометрических функций.

Уметь:

- использовать эти свойства при решении задач.

п. 7 (1) № 101 (в, г), 109 (в, г)


25

28.10


Исследование тригонометрических функций

Знать:

- свойства тригонометрических функций;

- общую схему исследования функций.

Уметь:

- использовать свойства функций для решения задач.

п. 7 (1) № 104 (в, г)


26

07.11


Гармонические колебания

Знать:

- что называют гармоническими колебаниями, амплитудой, частотой колебания, начальной фазой колебания, периодом гармонического колебания.

Уметь:

- решать простейшие задачи для гармонических колебаний.

п. 7 № 106 (в, г), 108


27

09.11


Исследование функций

Знать:

- свойства тригонометрических функций;

- общую схему исследования функций.

Уметь:

- выполнять исследование функции;

- определять свойства;

- строить графики.

п. 7 № №112 (в, г), № 113(в, г)


28

11.11


Контрольная работа № 2. Исследование функций

Уметь:

- строить графики функций и описывать их свойства;

- владеть навыками самоанализа и самоконтроля

п. 7 № 103


Глава III. Решение тригонометрических уравнений и неравенств (16 часов)

Цель:

- формирование представлений о решении тригонометрических уравнений на числовой окружности, об арккосинусе, арксинусе, арктангенсе и арккотангенсе;

- овладение умением решения тригонометрических уравнений методом введения новой переменной, разложения на множители;

- формирование умений решения однородных тригонометрических уравнений, неравенств;

- расширение и обобщение сведений о видах тригонометрических уравнений и неравенств.


29

14.11


Анализ контрольной работы. Арксинус

Знать:

- теорему о корне;

- определение арксинуса.

Уметь:

- применять теорему о корне;

- определение арксинуса для решения задач.

п. 8 (1,2) № 117 (в, г), 121 (в, г)


30

16.11


Арксинус и арккосинус

Знать:

- формулировку теоремы о корне;

- определения арксинуса и арккосинуса.

Уметь:

- решать простейшие задачи с арксинусом и арккосинусом.

п. 8 (1-3) № 127, 134


31

18.11


Арктангенс и арккотангенс

Знать:

- определения обратных тригонометрических функций.

Уметь:

- использовать их при решении задач.

п. 8 №131


32

21.11


Решение уравнения вида cosx=a

Знать:

- определение простейших тригонометрических уравнений;

- формулу корней уравнения cosx=a, особую форму записи решений для частных случаев.

Уметь:

- решать уравнения вида cosx=a и уравнений, которые приводятся к такому виду.

п. 9 (1) № 137 (в, г), 145 (а), 144 (в)


33

23.11


Решение уравнения sinx=a

Знать:

- определение простейших тригонометрических уравнений;

- формулу корней уравнения sinx=a, особую форму записи решений для частных случаев.

Уметь:

- решать уравнения вида sinx=a и уравнений, которые приводятся к такому виду.

п. 9 (1,2) № 139 (в, г), 146 (б)


34

25.11


Решение уравнения tgх=а

Знать:

- определение простейших тригонометрических уравнений;

- формулу корней уравнения tgx=a.

Уметь:

- решать простейших тригонометрических уравнения вида cosx=a, sinx=a, tgx=a.

п. 9 № 145 (в), 146 (в), 142


35

28.11


Решение простейших тригонометрических неравенств

Знать:

- определение простейших тригонометрических неравенств;

- различные способы их решения.

Уметь:

- отмечать решения простейших тригонометрических неравенств на графике функции и на единичной окружности.

п. 10 № 151 (в, г), 152 (в, г), 153 (в, г)


36

30.11


Решение простейших тригонометрических неравенств

Знать:

- алгоритм решения простейших тригонометрических неравенств.

Уметь:

- использовать этот алгоритм для решения неравенств.

п. 10 № 157 (в), 158 (в), 159 (в)


37

02.12


Решение простейших тригонометрических неравенств

Знать:

- алгоритм решения простейших тригонометрических неравенств.

Уметь:

- использовать его при решении задач.

п. 10 № 160 (а, г), 163 (б, в)


38

05.12


Решение тригонометрических уравнений

Знать:

- основные тригонометрические формулы;

- формулы для решения простейших тригонометрических уравнений.

Уметь:

- решать тригонометрические уравнения, приводимые к квадратным.

п. 11 № 165 (в, г), 167 (в, г)


39

7.12


Решение тригонометрических уравнений

Знать:

- основные тригонометрические формулы;

- формулы для решения простейших тригонометрических уравнений.

Уметь:

- решать однородные тригонометрические уравнения;

- уравнения, приводимые к квадратным.

п. 11 № 169 (в, г), 172 (в, г)


40

9.12


Решение тригонометрических уравнений

Знать:

- основные тригонометрические формулы;

- формулы для решения простейших тригонометрических уравнений.

Уметь:

- решать различные тригонометрические уравнения.

п. 11 № 173 (а, б), 174 (а, б)


41

12.12


Решение тригонометрических систем уравнений

Знать:

- основные тригонометрические формулы;

- свойства тригонометрических функций;

- способ подстановки для решения систем уравнений.

Уметь:

- решать системы тригонометрических уравнений.

п. 11 № 175 (а, б), 176 (а, б)


42

14.12


Решение тригонометрических уравнений и систем уравнений

Знать:

- приемы решения тригонометрических уравнений и систем уравнений.

Уметь:

- решать тригонометрические уравнения и системы уравнений;

- подготовиться к контрольной работе.

По карточкам


43

16.12


Контрольная работа № 3. Решение тригонометрических уравнений и неравенств

Уметь:

- расширять и обобщать сведения о видах тригонометрических уравнений;

- решать разными методами тригонометрические уравнения.

149 (в, г)


44

19.12


Работа над ошибками




Глава IV. Производная (16 часов)

Цель:

- формирование умений применения правил вычисления производных и вывода формул производных элементарных функций;

-формирование представления о понятии предела числовой последовательности и функции;

- овладение умением исследования функции с помощью производной, составлять уравнения касательной к графику функции.


45

21.12


Приращение функции

Знать:

- что такое приращение аргумента, приращение функции, средняя скорость изменения функции.

Уметь:

- находить приращение аргумента и приращение функции.

п. 12 № 178 (в, г), 179(в, г), 186 (в, г)


46

23.12


Приращение функции

Знать:

- что такое приращение независимой переменной, приращение зависимой переменной, средняя скорость изменения функции;

- понимать геометрический смысл приращений .

Уметь:

- использовать данные понятия при решении задач.

п. 12 № 184 (в, г), 183 (в, г)


47

26.12


Понятие о производной

Знать:

- что называется касательной к графику;

- формулу для нахождения углового коэффициента касательной.

Уметь:

- проводить касательную к графику функции;

- определять знак углового коэффициента касательной;

- находить разностное отношение;

- иметь понятие о мгновенной скорости движения.

п. 13 (1, 2) № 188 (б), 191 (б), 192 (б)


48

11.01


Понятие о производной

Знать:

- определение производной;

- алгоритм нахождения производной;

- обозначение производной;

- что такое дифференцирования.

Уметь:

- находить производную по определению;

- использовать выведенные правила дифференцирования.

п. 13 № 194 (в, г), 195 (в, г)


49

13.01


Понятие о непрерывности функции и предельном переходе

Знать:

- понятие предельного перехода, непрерывности функции в точке;

- правила предельного перехода.

Уметь:

- определять непрерывность функции, предельный переход.

п. 14 № 198 (б, в), 203


50

16.01


Понятие о непрерывности функции и предельном переходе

Знать:

- понятие предельного перехода, непрерывности функции в точке;

- правила предельного перехода.

Уметь:

- определять непрерывность функции;

- использовать правила предельного перехода.

п. 14 № 202, 206


51

18.01


Правила вычисления производных

Знать:

- основные правила дифференцирования;

- формулу вычисления производной степенной функции, следствии из правила 2.

Уметь:

- находить производные целых рациональных и дробно-рациональных функций по указанным выше правилам.

п. 15 № 209 (а, б), 210 (а, б), 211 (а, б)


52

20.01


Правила вычисления производных

Знать:

- правила вычисления производных.

Уметь:

- использовать эти правила для нахождения производных.

п. 15 № 212 (а), 213 (а), 214 (а)


53

23.01


Правила вычисления производных

Знать:

- правила нахождения производных.

Уметь:

- применять эти правила при решении задач на нахождение производной.

п. 15 № 215 (а), 216 (а), 217 (а)


54

25.01


Правила вычисления производных

Знать:

- правила для нахождения производных.

Уметь:

- использовать эти правила для решения задач.

п. 15 № 215 (б), 216 (б), 217 (б)


55

27.01


Производная сложной функции

Знать:

- понятие сложной функции;

- формулу производной сложной функции.

Уметь:

- находить производную сложной функции.

п. 16 № 224 (в, г), 225 (в, г)


56

28.01


Производная сложной функции

Знать:

- понятие сложной функции;

- формулу для нахождения производной сложной функции;

- условие дифференцируемости функции.

Уметь:

- находить производную сложной функции;

- область определения функций.

п. 16 № 222 (в, г), 230 (в, г)


57

30.01


Производные тригонометрических функций

Знать:

- формулу производных синуса, косинуса, тангенса и котангенса.

Уметь:

- находить производные тригонометрических функций;

- решать задачи с использованием формул дифференцирования.

п. 17 № 234 (в, г), 235 (в, г)


58

01.02


Производные тригонометрических функций

Знать:

- формулу производных тригонометрических функций.

Уметь:

- использовать их при решении задач;

- применять все формулы дифференцирования.

п. 17 № 239


59

03.02


Производные тригонометрических функций

Знать:

- все формулы дифференцирования.

Уметь:

- решать задачи на нахождение производных.

п. 17 № 238 (в, г), 232 (в, г)


60

06.02


Контрольная работа № 4. Производная.

Уметь:

- расширять и обобщать сведения по нахождению производной;

- владеть навыками самоанализа и самоконтроля.

226


Глава V. Применение непрерывности и производной (15 часов)


61

08.02


Анализ контрольной работы. Применение непрерывности

Знать:

- понятие непрерывность функции;

- свойство непрерывных функций.

Уметь:

- определять непрерывность функции, свойство определения функции;

- использовать свойство непрерывных функций для решения задач.

п. 18 (1) № 242 (в, г), 243 (в, г)


62

10.02


Применение непрерывности

Знать:

- понятие непрерывность функции на промежутке;

- свойство непрерывных функций;

- алгоритм решения неравенств методом интервалов.

Уметь:

- использовать метод интервалов при решении задач.

п. 18 (1, 2) № 244 (а, б), 245 (а, б), 246 (а, б)


63

13.02


Применение непрерывности

Знать:

- свойство непрерывных функций;

- алгоритм решения неравенств методом интервалов.

Уметь:

- решать неравенства методом интервалов.

п. 18 (1,2) № 249 (а, г), 248 (в, г), 250 (в, г)


64

15.02


Применение непрерывности

Знать:

- свойство непрерывных функций;

- алгоритм решения неравенств методом интервалов.

Уметь:

- решать неравенства методом интервалов;

- определять непрерывность функции.

п. 18 № 4 (1, 2) стр. 171


65

17.02


Касательная к графику функции

Знать:

- понятия секущей и касательной;

- что такое угловой коэффициент касательной, в чем состоит геометрический смысл производной.

Уметь:

- определять по графику положение касательной, тангенс угла наклона к оси абсцисс.

п. 19 № 256 (в, г), 257 (в, г)


66

21.02


Касательная к графику функции

Знать:

- определение касательной, геометрический смысл производной;

- как находить угловой коэффициент касательной;

- уравнение касательной, формулу Лагранжа.

Уметь:

- составлять уравнение касательной к графику функции в точке с абсциссой .

п.19 № 257 (б), 260 (б)


67

22.02


Касательная к графику функции

Знать:

- определение касательной;

- уравнение касательной;

- геометрический смысл производной.

Уметь:

- использовать определение касательной;

- уравнение касательной в решении задач.

п. 19 № 258 (в, г), 259 (в, г)


68

24.02


Касательная к графику функции

Знать:

- определение касательной;

- уравнение касательной.

Уметь:

- решать задачи, используя определение касательной и уравнение касательной.

п. 20 № 261 (а, б)


69

27.02


Приближенные вычисления

Знать:

- формулу для приближенных вычислений;

- для вычислений .

Уметь:

- выполнять приближенные вычисления.

п. 20 № 264 (в, г), 265 (в, г)


70

01.03


Приближенные вычисления

Знать:

- формулу для приближенного вычисления.

Уметь:

- использовать эту формулу для решения задач.

п. 20 № 264 (в, г), 265 (в, г)


71

03.03


Производная в физике и технике

Знать:

- механический смысл производной, как находить скорость движения, ускорение движения;

- что такое мгновенная скорость движения, средняя скорость движения.

Уметь:

- решать задачи, используя механический смысл производной.

п. 21 (1) № 268, 270, 272


72

06.03


Производная в физике и технике

Знать:

- механический смысл производной;

- формулы для нахождения скорости и ускорения, примеры применения производной.

Уметь:

- применять правила дифференцирования для решения задач физики и механики.

п. 21 № 7 (3 (а, б)) стр. 172


73

10.03


Производная в физике и технике

Знать:

- механический смысл производной;

- как определяется средняя скорость, мгновенная скорость, ускорение.

Уметь:

- решать задачи механики с помощью производной;

- использовать формулу Лагранжа.

п. 21 № 7 (3 (в)) стр. 172


74

13.03


Производная в физике и технике

Знать:

- механический смысл производной;

- как определяется средняя скорость, мгновенная скорость, ускорение.

Уметь:

- решать задачи механики с помощью производной;

- использовать формулу Лагранжа.

п. 21 № 7 (3 (г)) стр. 172


75

15.03


Контрольная работа № 5. Применение непрерывности и производной

Уметь:

- составлять уравнения касательной к графику функции;

- владеть навыками самоанализа и самоконтроля.

Стр. 171 №4 (2)


Глава VI. Применение производной к исследованию функций (10 часов)


76

17.03


Анализ контрольной работы. Признак возрастания (убывания) функции

Знать:

- достаточный признак возрастания функции;

- достаточный признак убывания функции.

Уметь:

- определять промежутки возрастания и убывания функции.

п. 22 № 279 (в, г), 282 (в, г)


77

20.03


Признак возрастания (убывания) функции

Знать:

- определять возрастания и убывания функции;

-достаточный признак возрастания функции;

- достаточный признак убывания функции.

Уметь:

- находить промежутки возрастания и убывания функции.

п. 22 № 284 (в, г)


78

22.03


Признак возрастания (убывания) функции

Знать:

- достаточный признак возрастания функции;

- достаточный признак убывания функции.

Уметь:

- определять промежутки возрастания и убывания функции.

п. 22 № 281 (в, г), 285 (в, г)


79

24.03


Критические точки функции, максимумы и минимумы

Знать:

- определение критических точек, необходимое условие экстремума, признак максимума функции, признак минимума функции.

Уметь:

- находить критические точки функции, точки максимума и точки минимума.

п. 23 № 288 (в, г), 290 (в, г)


80

03.04


Критические точки функции, максимумы и минимумы

Знать:

- определение критических точек, необходимое условие экстремума, признак максимума функции, признак минимума функции.

Уметь:

- находить критические точки функции, точки экстремума.

п. 23 № 292 (в, г), 293 (в, г)


81

05.04


Критические точки функции, максимумы и минимумы

Знать:

- определение критических точек, необходимое условие экстремума, признак максимума функции, признак минимума функции;

- достаточный признак возрастания функции;

- достаточный признак убывания функции.

Уметь:

- определять критические точки, промежутки возрастания и убывания.

п. 23 № 294 (в, г)


82

07.04


Критические точки функции, максимумы и минимумы

Знать:

- что такое критические точки функции, точки экстремума, необходимое условие экстремума, признак максимума функции, признак минимума функции;

- достаточный признак возрастания функции;

- достаточный признак убывания функции.

Уметь:

- находить критические точки функции, точки экстремума, промежутки возрастания и убывания.

п. 23 № 291 (в, г)


83

10.04


Исследование функций с помощью производной

Знать:

- план исследование функции с помощью производной;

- свойства функций.

Уметь:

- выполнить исследование функций с помощью производной и строить графики.

п. 24 № 297 (в)


84

12.04


Исследование функций с помощью производной

Знать:

- схему исследования функций с помощью производной.

Уметь:

- исследовать функции с помощью производной и строить графики согласно исследованию.

п. 24 № 297 (г)


85

14.04


Применение производной к исследованию функций

Знать:

- свойства функций;

- схему исследования функций с помощью производной;

- примеры использования производной при решении задач.

Уметь:

- решать задачи с помощью производной.

п. 24 № 304 (б), 303 (б)


86

17.04


Исследование функций с помощью производной

Знать:

- схему исследования функций с помощью производной.

Уметь:

- выполнить исследование функций с помощью производной и строить графики.

п. 24 № 297 (г)


87

19.04


Наибольшее и наименьшее значения функции

Знать:

- алгоритм нахождения наибольшего и наименьшего значение функции.

Уметь:

- находить наибольшее и наименьшее значение функции на отрезке.

п. 25 № 305 (в, г)


88

21.04


Наибольшее и наименьшее значения функции

Знать:

- алгоритм решения практических задач на нахождение наибольшего или наименьшего значения.

Уметь:

- решать простейшие задачи практического характера.

п. 25 № 313


89

24.04


Наибольшее и наименьшее значения функции

Знать:

- алгоритм решения практических задач с помощью производной.

Уметь:

- выполнять решение таких задач.

п. 25 № 318


90

26.04


Наибольшее и наименьшее значения функции

Знать:

- алгоритм решения практических задач с помощью производной.

Уметь:

- выполнять решение таких задач.

п. 25 № 315


91

28.04



Контрольная работа № 6. Применение производной к исследованию функций

Уметь:

- расширять и обобщать сведения по исследованию функции с помощью производной;

- составлять уравнения касательной к графику функции;

- владеть навыками самоанализа и самоконтроля.

п. 25 № 298 (в, г)


Обобщающее повторение курса алгебры и начала анализа за 10 класс (6 часов)

Цель:

- обобщить и систематизировать курс алгебры и начала анализа за 10 класс, решая тестовые задания по сборнику И.В. Ященко «Математика ЕГЭ-2016, 2017 (профильный уровень; базовый уровень)»;

- создать условия для плодотворного участия в работе в группе; умения самостоятельно и мотивированно организовывать свою деятельность.


92-93

03.05

05.05



Анализ контрольной работы. Графики тригонометрических функций

Знать:

- тригонометрические функции, их свойства и графики, периодичность, основной период.

Уметь:

- работать с учебником, отбирать

и структурировать материал;

- отражать в письменной форме своих решений, рассуждать, выступать с решением проблемы, аргументировано отвечать на вопросы собеседников.



94-95

08.05

10.05



Тригонометрические уравнения

Уметь:

-преобразовывать простые тригонометрические выражения; решать тригонометрические уравнения;

- извлекать необходимую информацию из учебно-научных текстов.



96-97

12.05

15.05



Преобразование тригонометрических выражений

Уметь:

- преобразовывать простые тригонометрические выражения, применяя различные формулы и приемы;

- собрать материал для сообщения по заданной теме;

- правильно оформлять работу, отражать в письменной форме свои решения, выступать с решением проблемы.



98-99

17.05

19.05



Применение производной


Уметь:

- использовать производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических задачах;

- развернуто обосновывать суждения;

- воспринимать устную речь, участвовать в диалоге.



100-101

22.05

24.05


Итоговая контрольная

работа

Проверить умение обобщения и систематизации знаний по основным темам курса математики 10 класса.

Уметь проводить самооценку собственных действий.



102

26.05


Завершающий урок за курс 10 класса




















Автор
Дата добавления 31.08.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров48
Номер материала ДБ-171625
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх