Инфоурок Геометрия Рабочие программыРабочая программа по геометрии для учащихся 8 класса(физико-математическая группа)

Рабочая программа по геометрии для учащихся 8 класса(физико-математическая группа)

Скачать материал

Государственное бюджетное общеобразовательное учреждение

Школа №463

имени Героя Советского Союза Д.Н. Медведева

 

 

«Согласовано»                                                        «Утверждаю»

Зам. директора по НМР                                     Директор ГБОУ Школа 463

___________О.А. Савченко                              ___________Л.В.Рузина

«___»______2015 г.                                           «__»_______2015г.

Протокол№____ заседания НМ

 

 

РАБОЧАЯ ПРОГРАММА

по геометрии

 

 

 

Класс: 11 класс

Учитель: Федотова Людмила Владимировна,

учитель математики, учитель высшей категории,

Почетный работник РФ

 

 

Москва 2015-16 учебный год

 

Пояснительная записка

Статус документа

Настоящая программа по геометрии для основной общеобразовательной школы 8  класса составлена на основе Федерального компонента государственного стандарта основного  общего образования (приказ МО и Н РФ от 05.03.2004г. № 1089);  Программы общеобразовательных учреждений по геометрии 7–9 классы,  к учебному комплексу для 7-9 классов (авторы Л.С. Атанасян,   В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2009. – с. 19-21); Программы для общеобразовательных школ, гимназий, лицеев математика 5-11 классы,  по геометрии (углубленное изучение) 8–9 классы,  к учебному комплексу для 8 - 9 классов (авторы Л.С. Атанасян,   В.Ф. Бутузов, С.В. Кадомцев и др., составители Г.М. Кузнецова, Н.Г. Миндюк– М: «Дрофа», 2004 – с. 279)

Цель изучения:

·         овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

·         интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

·         формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

·         воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

·         приобретение конкретных знаний о пространстве и практически значимых умений, фор­мирование языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математи­ческой культуры, для эстетического воспитания обучающихся. Изу­чение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Общая характеристика учебного предмета

Геометрия— один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, фор­мирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математи­ческой культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
В курсе геометрии 8 класса  изучаются наиболее важные виды четы­рехугольников : параллелограмм, прямоугольник, ромб, квад­рат, трапеция;  даётся представление о фигурах, обладающих осе­вой или центральной симметрией; расширяются и углубляются полученные в 5—6 классах представления обучающихся об измерении и вычисле­нии площадей; выводятся формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказывается одна из глав­ных теорем геометрии — теорему Пифагора; вводится понятие подобных треугольни­ков; рассматриваются признаки подобия треугольников и их применения; делается первый шаг в освоении учащимися тригонометриче­ского аппарата геометрии; расширяются сведения об окружности, полученные учащимися в 7 классе; изучаются новые факты, связанные с окружностью; знакомятся обучающиеся с четырьмя заме­чательными точками треугольника; знакомятся обучающиеся с выполнением действий над векторами как направленными отрезками, что важно для применения векторов в физике.

Количество учебных часов:

В год – 102 часа (3 часа в неделю, всего 102 часа)
В том числе:
Контрольных работ – 6.
Резервное время - 6 ч.

Формы промежуточной и итоговой аттестации: Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных, работ и математических диктантов (по 10 - 15 минут) в конце логически законченных блоков учебного материала. Итоговая аттестация предусмотрена в виде административной контрольной работы.

Уровень обучения– углубленный.

Срок реализации рабочей учебной программы – один учебный год.

В данном классе ведущими методами обучения предмету являются: объяснительно - иллюстративный и репродуктивный,  используется  частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.

 

 

Основное содержание

Четырехугольники (18 часов)

Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция, виды и свойства трапеции. Пря­моугольник, ромб, квадрат, их свойства. Теоремы о средней линии треугольника и трапеции. Теоремы Фалеса и Вариньона. Симметрия четырехугольников и других фигур.

Цель: изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осе­вой или центральной симметрией.
Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразо­вание плоскости, а как свойства геометрических фигур, в част­ности четырехугольников. Рассмотрение этих понятий как дви­жений плоскости состоится в 9 классе.

Площадь. Теорема Пифагора. (18часов)

Равносоставленные многоугольники. Понятие площади многоугольника. Площади квадрата, прямоуголь­ника, параллелограмма, треугольника и трапеции. Теорема об отношении двух треугольников, имеющих по равному углу. Теорема Пи­фагора. Обратная терема Пифагора. Приложения теоремы Пифагора. Формула Герона.

Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычисле­нии площадей; вывести формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказать одну из глав­ных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квад­рата. Нетрадиционной для школьного курса является теорема об от­ношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство призна­ков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Подобные треугольники (24 часа)

Пропорциональные отрезки. Определение подобных треугольников.  Отношение площадей подобных треугольников. Признаки подобия треугольников. Применение подобия к доказательству теорем: обобщение теоремы Фалеса, теоремы Чевы и Менелая.
Замечательные точки треугольника и их свойства.
Метод подобия в задачах на построение.
Понятие о подобии произвольных фигур.
Соотношения между сторонами и углами прямоугольного треугольника. Значения  синуса, косинуса   и тангенса  острого угла прямоугольного треуголь­ника. Решение прямоугольных треугольников.

Цель: ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.
Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорцио­нальность сходственных сторон.
Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.
Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках  в  прямоугольном  треугольнике.   Дается  представление о методе подобия в задачах на построение.
В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

Окружность (17 часов)

Взаимное расположение прямой и окружности. Касательная к окружности. Касательная к кривой линии. Взаимное расположение окружности.
Углы, связанные с окружностью: центральные и вписанные углы, углы между хордами и секущими. Теорема о квадрате касательной.
Вписанная и описанная окружности. Формула Эйлера. Теорема Птолемея. Вневписанные окружности.

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя замечательными точками треугольника.
В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач. Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.  Формула Эйлера. Теорема Птолемея. Вневписанные окружности.

Векторы (15 часов)

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число.
Разложение вектора по двум неколлинеарным векторам. Деление отрезка в данном отношении. Центр масс системы точек  Применение векторов к решению задач и доказательству теорем.

Цель: научить обучающихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.
Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и па­раллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).
На примерах показывается, как векторы могут применяться к решению геометрических задач.

Повторение. Решение задач. (6 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 8 класса.

Требования к уровню подготовки по геометрии  обучающихся  в 8 классе

В ходе преподавания геометрии в 8 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт: планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования; поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В результате изучения курса геометрии 8 класса обучающиеся должны:

знать/понимать

·         существо понятия математического доказательства; примеры доказательств;

·         существо понятия алгоритма; примеры алгоритмов;

·         как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

·         как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

·         как потребности практики привели математическую науку к необходимости расширения понятия числа;

·         вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

·         каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;

·         смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

·         пользоваться языком геометрии для описания предметов окружающего мира;

·         распознавать геометрические фигуры, различать их взаимное расположение;

·         изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

·         распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

·         в простейших случаях строить сечения и развертки пространственных тел;

·         проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

·         вычислять значения геометрических величин (длин, углов, площадей, объемов);  в том числе: для углов от 0° до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них;  находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

·         решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

·         проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

·         решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

·         описания реальных ситуаций на языке геометрии;

·         расчетов, включающих простейшие тригонометрические формулы;

·         решения геометрических задач с использованием тригонометрии

·         решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

·         построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

                     Календарно-тематическое планирование

«Геометрия» - 8 класс  Л.С.Атанасян и др.

                                   3 часа в неделю, всего 102 часа

Номера уроков

Четырехугольники. (18 часов)

Примечания:

1 ,2

Ломаная. Многоугольник. Выпуклые и невыпуклые многоугольники. Свойства диагоналей четырёхугольника.

2

3, 4, 5

Параллелограмм, признаки и свойства параллелограмма.

3

6,7

Прямоугольник. Ромб. Квадрат

2

8,9,10

Трапеция, виды и свойства

3

11,12

Средние линии треугольника и трапеции

2

13,14,15

Теорема Фалеса и Вариньона

3

16,17

Симметрия четырёхугольников и других фигур.

2

18

Контрольная работа №1 "Четырехугольники"

1

Площадь. Теорема Пифагора.(18  часов)

19

Понятие площади. Свойства площади. Равносоставленные и равновеликие фигуры.

1

20,21

Площадь квадрата, прямоугольника

2

22,23

Площадь параллелограмма, треугольника, трапеции.

2

24

Отношение площадей двух треугольников, имеющих по равному углу.

1

25,26

Площадь ромба, многоугольника.

2

27,28,29

Теорема Пифагора.

3

30 -33

Приложение теоремы Пифагора.

4

34,35

Формула Герона

2

36

Контрольная работа №2 "Площади".

1

Подобные треугольники (24 часа)

37

Пропорциональные отрезки. Определение подобных треугольников.

1

38

Пропорциональные отрезки. Определение подобных треугольников.

1

39,40

Три признака подобия треугольников

2

41 – 43

Применение подобия к доказательству теоремы: обобщение теоремы Фалеса, теоремы Чевы и Менелая.

3

44,45

Применение подобия к решению задач.

2

46

Замечательные точки треугольника и их свойства

1

47 -49

Метод подобия в задачах на построение

3

50

Понятие о подобии произвольных фигур.

1

51

Контрольная работа №3 "Признаки подобия треугольников".

1

52,53

Соотношение между сторонами и углами прямоугольного треугольника

2

54 -56

Значение синуса, косинуса, тангенса некоторых углов.

3

57 - 59

Решение прямоугольных треугольников

3

60

Контрольная работа №4 "Соотношение между сторонами и углами прямоугольного треугольника".

1

Окружность.(21  час)

61

Взаимное расположение прямой и окружности

1

62

Касательная к окружности

1

63

Касательная к кривой линии.

1

64,65

Взаимное расположение двух окружностей

2

66-69

Углы, связанные с окружностью: центральные и вписанные, между хордами и секущими.

4

70

Теорема о квадрате касательной

1

71,72

Вписанные и описанные окружности

2

73

Формула Эйлера

1

74

Теорема Птолемея

1

75,76,77

Вневписанные окружности

3

78,79

Решение задач по теме: «Окружность»

2

80

Контрольная работа №5 "Окружность".

1

81

Анализ контрольной работы. Решение задач.

1

Векторы (15 часов)

82,83

Понятие вектора. Равенство векторов.

2

84,85

Сложение и вычитание векторов.

2

86

Умножение векторов на число.

1

87 -89

Разложение векторов по двум неколлинеарным векторам.

3

90 – 92

Деление отрезка в данном отношении.

3

93

Центр масс системы точек.

1

94,95

Применение векторов к решению задач и доказательству теорем.

2

96

Контрольная работа №6 по теме: «Векторы».

1

97 - 102

Повторение. Решение задач. (6 часов)

 Литература

1.     Федеральный компонент государственных образовательных стандартов  основного общего  образования (приказ Минобрнауки от 05.03.2004г. № 1089).

2.     Примерная программа по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г № 03-1263)

3.     Программа общеобразовательных учреждений по геометрии 7–9 классы,  к учебному комплексу для 7-9 классов (авторы Л. С. Атанасян,   В. Ф. Бутузов, С. В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2009 – М: «Просвещение», 2008. – с. 19-21).

4.     Геометрия:   учеб,   для   7—9 кл. / [Л. С. Атанасян,   В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2010.

5.     Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков и др.]. -М.: Просвещение,  2008.

6.     Геометрия:   дидактические   материалы  для   8 кл. / Б. Г. Зив, В. М. Мейлер. — М.: Просвещение, 2010/.

7.     Л. С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др. Рабочая тетрадь для 8 класса, - М.: Просвещение,  2010

8.     «Геометрия. Дополнительные главы к школьному учебнику 8 класса»; Л. С. Атанасян, В.Ф. Бутузов и др. М.: Вита – Пресс, 2005.

9.       http://www.netschools.ru/sch1567/metod/proggeom.htm

 

 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Рабочая программа по геометрии для учащихся 8 класса(физико-математическая группа)"

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Специалист сварочного производства

Получите профессию

Менеджер по туризму

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 664 898 материалов в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 20.12.2015 618
    • DOCX 38.8 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Федотова Людмила Владимировна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Федотова Людмила Владимировна
    Федотова Людмила Владимировна
    • На сайте: 8 лет и 4 месяца
    • Подписчики: 1
    • Всего просмотров: 6736
    • Всего материалов: 5

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Технолог-калькулятор общественного питания

Технолог-калькулятор общественного питания

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Применение математических знаний в повседневной жизни

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 28 человек из 17 регионов
  • Этот курс уже прошли 15 человек

Курс повышения квалификации

Применение возможностей MS Excel в профессиональной деятельности учителя математики

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 36 человек из 19 регионов
  • Этот курс уже прошли 196 человек

Курс повышения квалификации

Особенности подготовки к проведению ВПР в рамках мониторинга качества образования обучающихся по учебному предмету "Математика" в условиях реализации ФГОС ООО

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 203 человека из 54 регионов
  • Этот курс уже прошли 1 515 человек

Мини-курс

Современное инвестирование: углубленное изучение инвестиций и финансовых рынков

8 ч.

1180 руб. 590 руб.
Подать заявку О курсе
  • Сейчас обучается 26 человек из 13 регионов

Мини-курс

Национальная система учительского роста: путь к эффективности

4 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Финансы и управление в медиакоммуникациях

3 ч.

780 руб. 390 руб.
Подать заявку О курсе
Сейчас в эфире

Консультация эксперта в сфере высшего образования. Как подготовиться к поступлению в вуз: простые ответы на сложные вопросы

Перейти к трансляции