Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 10-11 классы, УМК Ш.А. Алимов.

Рабочая программа по математике 10-11 классы, УМК Ш.А. Алимов.

  • Математика

Поделитесь материалом с коллегами:

  1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Рабочая программа по алгебре и геометрии включает разделы: пояснительную записку; общую характеристику учебного предмета, описание места учебного предмета в учебном плане, содержание учебного предмета, тематическое и календарно-тематическое планирование с определением основных видов учебной деятельности, учебно-методическое и материально-техническое обеспечение образовательного процесса, планируемые результаты изучения учебного предмета.

Рабочая программа составлена на основе:

  1. Закон «Об образовании в Российской Федерации» от 29.12. 2012 года № 273-ФЗ.

  2. Приказ Министерства образования РФ от 05.03. 2004 г. N 1089 «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования», с изменениями и дополнениями.

  3. Приказ Министерства образования и науки Российской Федерации (Минобрнауки России) от 31 марта 2014 г. № 253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования».

  4. Постановление Федеральной службы по надзору в свете защиты прав потребителей и благополучия человека, Главного государственного санитарного врача РФ от 29.12. 2010 г. N 189 «Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях», с изменениями.

  5. Письмо Министерства образования и науки РФ от 01.04. 2005 г. № 03-417 «О перечне учебного и компьютерного оборудования для оснащения общеобразовательных учреждений».

  6. Приказ Министерства образования и науки РФ от 04.10. 2010 г. № 986 «Об утверждении федеральных требований к образовательным учреждениям в части минимальной оснащённости учебного процесса и оборудования учебных помещений».

  7. Рекомендации Министерства образования и науки РФ от 24.11. 2011 г. № МД-1552/03 «Об оснащении общеобразовательных учреждений учебным и учебно-лабораторным оборудованием».

  8. Приказ Министерства общего и профессионального образования Ростовской области от 08.08.2014г № 24/4.11-4851/М «О примерном порядке утверждения и примерной структуре рабочих программ».

  9. Программа для образовательных учреждений «Алгебра и начала анализа» и «Геометрия» 10-11 классы, Бурмистрова Т. А. – М.: Просвещение, 2009.

  10. Приказ Министерства общего и профессионального образования Ростовской области от 09.06.2015г № 405 «Об утверждении примерного учебного плана для образовательных учреждений Ростовской области на 2015-2016 учебный год»

  11. Годовой учебный план МБОУ «Кутейниковская СОШ» на 2015-2016 учебный год.



Рабочая программа выполняет две основные функции.

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации обучающихся.



Изучение математики на базовом уровне среднего общего образования направлено на достижение следующих целей:

  • формирование представлений о математике, как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.


Рабочая программа ориентирована на двухлетний срок освоения.


  1. ОБЩАЯ ХАРАКТЕРИСТИКА ПРЕДМЕТА

При изучении курса математики на базовом уровне продолжают и получают развитие содержательные курсы линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, статистики и теории вероятностей», вводится линия «Начала математического анализа».

В рамках указанных содержательных линий решаются следующие задачи:

  • систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

  • расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

  • изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;

  • развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путём обогащения математического языка, развития логического мышления;

  • знакомство с основными идеями и методами математического анализа.



  1. МЕСТО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ


Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе среднего общего образования отводится не менее 280 часов из расчета 4 часа в неделю. При этом предполагается построение курса в форме последовательности тематических блоков с чередованием материала по алгебре, анализу, дискретной математике, геометрии.

Преподавание математики в 10-11 классах реализуется следующим образом:

геометрия по 2 часа в неделю, алгебра по 3 часа в неделю. Усиление преподавания математики происходит за счет использования в учебно-методических материалов, направленных на подготовку к итоговой аттестации выпускников (ЕГЭ), изучения в 10 классе блока «Алгебраические уравнения. Системы нелинейных уравнений».



  1. СОДЕРЖАНИЕ УЧЕБНОГО КУРСА

10 класс

Алгебра и начала анализа

Действительные числа

Целые и рациональные числа. Действительные числа. Бесконечно убывающая геометрическая прогрессия и ее сумма. Корень степени n>1 и его свойства. Степень с рациональным показателем и его свойства. Понятие о степени с действительным показателем. Свойства степени с действительным показателем.

Степенная функция

Степенная функция с натуральным показателем, ее свойства и график. Обратная функция. Область определения и область значений обратной функции. График обратной функции. Равносильность уравнений и неравенств. Решение иррациональных уравнений.

Показательная функция

Показательная функция, ее свойства и график. Решение показательных уравнений и неравенств и их систем. Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных.

Логарифмическая функция

Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число e. Преобразование простейших выражений, включающих арифметические операции, операцию возведение в степень и операцию логарифмирования.

Логарифмическая функция, ее свойства и график. Решение логарифмических уравнений и неравенств.

Тригонометрические формулы

Радианная мера угла. Синус, косинус, тангенс, котангенс произвольного угла и числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования простейших тригонометрических выражений.

Тригонометрические уравнения

Простейшие тригонометрические уравнения. Решение тригонометрических уравнений. Простейшие тригонометрические неравенства. Арксинус, арккосинус, арктангенс числа.

Геометрия

10 класс

Введение

Предмет стереометрии. Основные понятия стереометрии (точка, прямая, плоскость, пространство) и аксиомы стереометрии. Первые следствия из аксиом.

Параллельность прямых и плоскостей

Пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямой и плоскости, признак и свойства. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность плоскостей, признаки и свойства. Параллельное проектирование. Изображение пространственных фигур.

Тетраэдр и параллелепипед, куб. Сечения куба, призмы, пирамиды.

Перпендикулярность прямых и плоскостей

Перпендикулярность прямой и плоскости, признаки и свойства. Перпендикуляр и наклонная. Теорема о трех перпендикулярах. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла. Площадь ортогональной проекции многоугольника.

Многогранники

Понятие многогранника, вершины, ребра, грани многогранника. Развертка. Выпуклые многогранники. Призма, ее основание, боковые ребра, высота, боковая и полная поверхности. Прямая и наклонная призма. Правильная призма. Пирамида, ее основание, боковые ребра, высота, боковая и полная поверхности. Треугольная пирамида. Правильная пирамида. Усеченная пирамида. Симметрия в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая и зеркальная). Примеры симметрий в окружающем мире. Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Векторы в пространстве

Понятие вектора в пространстве. Модуль вектора. Равенство векторов. Сложение и вычитание векторов. Коллинеарные векторы. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам Компланарные векторы. Разложение вектора по трем некомпланарным векторам.



11 класс

Алгебра и начала анализа


Повторение курса алгебры и начал анализа 10 класса

Тригонометрические функции

Тригонометрические функции y = sinx, y = cosx, y = tgx, y = ctgx, их свойства и графики. Периодичность функции, основной период. Обратные тригонометрические функции, их графики.

Производная и ее геометрический смысл

Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций.

Применение производной к исследованию функций

Применение производной к исследованию функций и построению графиков. Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Вторая производная и ее физический смысл.

Интеграл

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции. Формула Ньютона–Лейбница. Понятие об определенном интеграле как площади криволинейной трапеции. Примеры применения интеграла в физике и геометрии.

Элементы теории вероятностей

Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.



Геометрия

Метод координат в пространстве

Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.

Цилиндр, конус, шар

Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Цилиндр и конус. Фигуры вращения.

Объем и площадь поверхности

Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Принцип Кавальери. Объем пирамиды. Объем конуса и усеченного конуса. Объем шара и его частей. Площадь поверхности многогранника, цилиндра, конуса, усеченного конуса. Площадь поверхности шара и его частей.

Повторение




  1. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ



№№

Тематические блоки

Количество

часов

10 класс

Алгебра (102ч)

1.

Повторение

4

2.

Действительные числа

11

3.

Степенная функция

10

4.

Показательная функция

10

5.

Логарифмическая функция

14

6.

Алгебраические уравнения. Системы нелинейных уравнений

13

7.

Тригонометрические формулы

21

8.

Тригонометрические уравнения

13

9.

Повторение и решение задач

6

Геометрия (68 ч.)

1.

Введение. Аксиомы стереометрии и их следствия

5

2.

Параллельность прямых и плоскостей

19

3.

Перпендикулярность прямых и плоскостей

20

4.

Многогранники

12

5.

Векторы в пространстве

6

6.

Повторение курса геометрии 10 класса

6

11 класс

Алгебра и начала анализа (101ч.)

1.

Повторение курса алгебры и начал математического анализа за курс 10 класса

4

2.

Тригонометрические функции

13

3.

Производная и ее геометрический смысл

15

4.

Применение производной к исследованию функций

16

5.

интеграл

13

6.

Элементы комбинаторики

10

7.

Знакомство с вероятностью

9

8.

Итоговое повторение курса алгебры и начал математического анализа

21

Геометрия (67 ч.)

1.

Повторение курса геометрии 10 класса

4

2.

Метод координат в пространстве

15

3.

Цилиндр, конус и шар

16

4.

Объемы тел

22

5.

Итоговое повторение курса стереометрии

10





  1. УЧЕБНО-МЕТОДИЧЕСКОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА


  1. Алгебра и начала анализа: Учеб.для 10–11 кл. общеобразоват. учреждений /Ш.А.Алимова и др.;– М.: Просвещение, 2011.

  2. Алгебра и начала анализа: Учеб. для 9 кл. общеобразоват. учреждений /Ш.А.Алимова и др.;. – М.: Просвещение, 2009.

  3. Алгебра и начала анализа: Учеб.для 11 кл. общеобразоват. учреждений /Ю.М. Колягин и др.; М.: Мнемозина, 2003.

  4. Геометрия, 10–11: Учеб.для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2011.

  5. Б.Г. Зив. Дидактические материалы по геометрии для 10 и 11 классов. – М. Просвещение, 2007.

  6. С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 10 – 11 классах: Методические рекомендации к учебнику. Книга для учителя. – М.: Просвещение, 2006.

  7. Н.Е. Фёдорова, М.В. Ткачёва «Изучение алгебры и начал анализа в 10-11 классах», Просвещение, 2003.

  8. Сканави М.И. Сборник задач по математике для поступающих в вузы. Книга 1. Алгебра. М. : ОНИКС 21 век, Мир и образование, 2003.

  9. Звавич Л.И. и др. Алгебра и начала анализа: 3600 задач для школьников и поступающих в вузы. М.: Дрофа, 1999.

  10. Бурмистрова Т.А. Алгебра и начала математического анализа. 10 - 11 классы. Программы общеобразовательных учреждений. М., «Просвещение», 2009.

  11. Учебно-методические пособия по подготовке к ЕГЭ.



Электронные учебные пособия


    1. Уроки алгебры. Тригонометрия. 9-11 класс. Электронное интерактивное приложение. Издательство «Планета» 2012.


    1. Стереометрия. Компьютерные модели стереометрических фигур. 10-11 классы. Электронное учебное издание. 2012.










  1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА

Общеучебные умения, навыки и способы деятельности.


В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:


  • построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

  • выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

  • самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

  • проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

  • самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.


В результате изучения математики на базовом уровне ученик должен

знать/понимать1

  • значение математической науки для решения задач, возникающих в теории и в практике; широту и, в то же время, ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

  • вероятностный характер различных процессов окружающего мира.





Алгебра

уметь

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих тригонометрические функции;

  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизнидля

  • практических расчетов по формулам, включая формулы, содержащие тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.



Функции и графики

уметь

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций;

  • описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

  • решать уравнения, простейшие системы уравнений, используя свойства функций их графики.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.

Начала математического анализа


  • вычислять производные элементарных функций, используя справочные материалы;

  • исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и

простейших рациональных функций с использованием аппарата математического анализа;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • решения прикладных, в том числе социально-экономических и физических, задач на наибольшие и наименьшие значения, на нахождение скорости и ускорения;



Уравнения и неравенства

уметь

  • решать рациональные и простейшие тригонометрические уравнения, их системы;

  • составлять уравнения и неравенства по условию задачи;

  • использовать для приближенного решения уравнений и неравенств графический метод;

  • изображать на координатной плоскости множества решений простейших уравнений и их систем.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • построения и исследования простейших математических моделей.



Геометрия

уметь

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многогранники; выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей);

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизнидля

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.


ОЦЕНКА УСТНЫХ ОТВЕТОВ ОБУЧАЮЩИХСЯ ПО МАТЕМАТИКЕ

 

Ответ оценивается отметкой «5», если ученик:

  1. полно раскрыл содержание материала в объеме, предусмотренном программой и учебником,

  2. изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;

  3. правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  4. показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;

  5. продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при отработке умений и навыков;

  6. отвечал самостоятельно без наводящих вопросов учителя. Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Ответ оценивается отметкой «4», если он удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные по замечанию учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию учителя.

 Отметка «3» ставится в следующих случаях:

  • неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке обучающихся»);

  • имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

 Отметка «1» ставится, если:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.

 

ОЦЕНКА ПИСЬМЕННЫХ КОНТРОЛЬНЫХ РАБОТ ОБУЧАЮЩИХСЯ ПО МАТЕМАТИКЕ

 

Отметка «5» ставится, если:

  • работа выполнена полностью;

  • в логических  рассуждениях и обосновании решения нет пробелов и ошибок; 

  • в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).

Отметка «4» ставится, если:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).

 Отметка «3» ставится, если:

  • допущены более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме.

 Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.



ОБЩАЯ КЛАССИФИКАЦИЯ ОШИБОК

Грубыми считаются ошибки:

  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

  • незнание наименований единиц измерения;

  • неумение выделить в ответе главное;

  • неумение применять знания, алгоритмы для решения задач;

  • неумение делать выводы и обобщения;

  • неумение читать и строить графики;

  • потеря корня или сохранение постороннего корня;

  • отбрасывание без объяснений одного из них;

  • равнозначные им ошибки;

  • вычислительные ошибки, если они не являются опиской;

  • логические ошибки.

 К негрубым ошибкам следует отнести:

  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

  • неточность графика;

  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

  • нерациональные методы работы со справочной и другой литературой;

  • неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

  • нерациональные приемы вычислений и преобразований;

  • небрежное выполнение записей, чертежей, схем, графиков.


1

Автор
Дата добавления 30.09.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров438
Номер материала ДВ-022620
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх