Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Статьи / Создание условий для развития математической речи учащихся в условиях перехода на ФГОС нового поколения

Создание условий для развития математической речи учащихся в условиях перехода на ФГОС нового поколения



Внимание! Сегодня последний день приёма заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)


  • Математика

Поделитесь материалом с коллегами:

Создание условий для развития математической речи учащихся в условиях перехода на ФГОС нового поколения

А.Н.Гановичева

Почетный работник общего образования РФ

МБОУ СОШ № 34 г. Ставрополя

Общепризнанно, что «математика – самый короткий путь к самостоятельному мышлению», «математика ум в порядок приводит» как отмечал Михаил Васильевич Ломоносов.

Перед учителем стоит нелегкая задача – преодолеть в сознании учеников возникающее со стихийной неизбежностью представление о «сухости», формальном характере, оторванности этой науки от жизни и практики. Каждому ребенку даровано от природы склонность к познанию и исследованию окружающего мира. Правильно поставленное обучение должно совершенствовать эту склонность, способствовать развитию соответственных универсальных учебных действий. В сфере развития коммуникативных универсальных учебных действий в ФГОС нового поколения приоритетное внимание уделяется:

  • развитию речевой деятельности, приобретению опыта использования речевых средств для регуляции умственной деятельности, приобретению опыта регуляции собственного речевого поведения как основы коммуникативной компетентности.

В сфере развития познавательных универсальных учебных действий приоритетное внимание уделяется:

  • развитию стратегий смыслового чтения и работе с информацией;

При изучении учебных предметов обучающиеся усовершенствуют приобретенные на первом уровне навыки работы с информацией и пополнят их. Они смогут работать с текстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:

  • систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах.

Развитие математической речи должно быть естественным образом вплетено в учебный процесс, являться целью каждого урока.

Итак, необходимым условием формирования всей системы универсальных и предметных (математических) действий является развитие математической речи школьников. Новый стандарт основного общего школьного образования рассматривает речь как необходимый компонент личностных, метапредметных и предметных результатов обучения. В частности, отмечается необходимость усвоения школьниками математического языка и математической речи, выделяется знание языка алгебры, геометрии, а также умение точно и грамотно выражать свои мысли в устной и письменной речи как необходимый компонент предметных результатов обучения

Поэтому из вышесказанного следует, что необходимыми условиями развития математической речи школьников являются владение математическим языком и математической символикой, логической составляющей математической деятельности.

Начав работать в 5 классе, я сразу столкнулась с проблемой слабой математической речи учащихся, хотя в начальной школе они учились по программе 2100. В тетрадях учащихся было столько грамматических ошибок, что, казалось, что красной пастой исправлено больше, чем написано синей. И поэтому первым делом я начала вводить словарную работу на каждом уроке математики, а словарные диктанты - как элемент самостоятельной работы по математике. Кроме того, обучаясь по программе 2100 учащиеся в начальной школе учились по технологии проблемного диалога, которую мне пришлось освоить, и не только освоить, но и применять на уроках математики ( и не только в 5 классе) в основном при объяснении нового материала.

Проблемно-диалогическая технология дает развернутый ответ на вопрос, как учить, чтобы ученики ставили и решали проблемы. В словосочетании «проблемный диалог» первое слово означает, что на уроке изучения нового материала должны быть проработаны два звена: постановка учебной проблемы и поиск ее решения.

  • Постановка проблемы – это этап формулирования темы урока или вопроса для исследования.

  • Поиск решения – этап формулирования нового знания.

Например, при изучении темы «Координатная плоскость» учитель приносит на урок: глобус, карту, билеты в кинотеатр, шахматы, обговаривают, что это за предметы, для чего они нужны и подводят итог: что может объединять эти предметы, и тогда учащиеся могут сами сделать вывод о том, какую тему будем изучать на этом уроке. По этой теме можно задать сочинение «Зачем в школе изучаем тему: «Координатная плоскость» или провести на следующем уроке мини дебаты «Как можно обойтись без знания темы « Координатная плоскость»?

Итак, на проблемно-диалогическом уроке учитель сначала побуждающим или подводящим диалогом помогает ученикам поставить и решить проблему, а затем продуктивным заданием стимулирует их создать продукт и представить его классу. Получается, что технология проблемного диалога действительно обеспечивает творческое усвоение знаний: «Спросил, открыл, создал»,

Как учителю математики, мне предоставляется возможность – побудить интерес и любопытство учащихся , предлагая им задачи, соразмерные их знаниям и умениям.

1.Для развития речи учащихся я стараюсь грамотно строить свой разговор с учениками, так как речь учителя должна быть именно такой, которая воспринималась бы учащимися как некоторый образец. Стараюсь, чтобы каждое слово учителя, каждый его жест, помогали учащимся воспринимать предмет изложения. Внешние особенности речи учителя не должны отвлекать учащихся. Речь учителя не должна быть слишком быстрой, поскольку некоторые учащиеся могут не успеть за полётом мысли. Но она не может быть и слишком медленной, так как при таком изложении может потеряться мысль изложения.

2. Речь учащихся на уроках математики должна быть подчинена тем общим законам, которые учащиеся изучали на уроках русского языка. Дети должны правильно употреблять падежи; не опускать в речи союзы, правильно произносить числительные, строить предложения.
3. При работе с учебником обращаю внимание учащихся
на рубрику “Говори правильно”. Примеры склонения числительных (количественных, порядковых, дробных) даны и на форзаце учебника Н.Я. Виленкина “Математика. 5 класса”. Учащиеся могут пользоваться ими на уроках и при выполнении домашнего задания.

4. Для того, чтобы обеспечить правильное употребление учащимися математических терминов, обозначающих понятия, каждый из этих терминов должен не только сообщаться, но и изучаться: при сообщении термина должно быть по возможности указано его происхождение, его буквальный смысл, а затем должен быть исчерпывающе раскрыт его научный смысл; не надо скупиться на хорошие примеры, иллюстрации. Например, при изучении темы «Пропорции» по математике в 6 классе учащиеся неоднократно проговаривают определение о том, что пропорция – это равенство двух отношений. Только правильно записав пропорцию, можно с ней продолжать работу. Или, перпендикуляр – кратчайшее расстояние от точки до прямой, и строить его нужно под прямым углом к этой прямой. Уделяю особое внимание употребляемой математической фразеологии и настойчиво обогащаю ею научный стиль речи учащихся. Например: “Простым числом называется число, делящееся только на единицу и само на себя” (пропуск слова “только” полностью аннулирует это определение). На уроках геометрии объясняю, что одно потерянное слово или фраза могут полностью изменить содержание определения .


Слово «точка» образованно от глагола ткнуть и означает результат мгновенного дотрагивания. А «между двух соседних точек - прямая – самый краткий путь, иначе слишком много кочек необходимо обогнуть». Если дети не правильно изобразят на рисунке прямоугольный треугольник, то и решить задачу, связанную с ним будет достаточно трудно. Дополнительный материал о терминах, математических понятиях сообщаю под рубрикой «Это интересно».
5. В своей деятельности для развития грамотной математической речи использую различные
виды и формы работы: работа с математическим словарём и математической энциклопедией, использование «памяток», написание словарных диктантов, придумывание историй, сказок, написание стихотворений, математических частушек, готовят сообщения по темам. Дети с удовольствием участвуют в инсценировках.
Прекрасной тренировкой речи служит игровой спектакль. Его постановка требует большого терпения, т.к. дети не готовы к импровизации, плохо запоминают тексты. Это требует многих репетиций, но результат прекрасный.

6. Использую исторический материал:

изучая тему «Функции и их графики» узнаём, что термин «функция» (от латинского function – исполнение, совершение), впервые ввёл немецкий учёный Готфрид Лейбниц (1646-1716). У него функция связывалась с геометрическим образом (графиком функции) и предлагаю учащимся прочитать исторический материал о функциях. Чтобы учить учащихся говорить правильно и проводить эту работу в системе, накапливаю по темам материал «Учитесь говорить правильно».

7. Еще одним средством для развития языка учащихся может служить выработка правильной письменной речи. Слежу за выработкой устойчивой привычки аккуратно, ответственно относиться к письменному оформлению решения задач, используя необходимые объяснения, не допуская грамматических ошибок, нелепых сокращений слов. Выявление ошибок учащихся в их письменных работах (домашних и классных) является делом очень трудоёмким, но зато весьма благодарным, если учитель систематически, все принципиальные ошибки, допускаемые в письменных работах, обсуждает с учениками класса.

Два дара природы свойственны только человеку: способность мыслить и передавать свои мысли посредством речи. Проблема развития устной и письменной математической речи школьника остаётся всегда актуальной в учебной практике.

 Развитие речи учащихся – общепедагогическая проблема, и работать над её решением надо каждому педагогу.






57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)


Автор
Дата добавления 18.08.2016
Раздел Математика
Подраздел Статьи
Просмотров28
Номер материала ДБ-159639
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх