Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Урок "Теорема о площади треугольника"

Урок "Теорема о площади треугольника"

Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

К ОПЛАТЕ ЗА ОДНОГО УЧЕНИКА: ВСЕГО 28 РУБ.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика

Поделитесь материалом с коллегами:

Приложение 4


МБОУ «Орловская СОШ»










Открытый урок

по геометрии в 9 классе
«Теорема о площади треугольника»











Подготовил:

учитель математики

Лазарева Л.Л.


2015 год

Цели:

- доказать теорему о площади треугольника;

- научить учащихся решать задачи на применение теоремы о площади треугольника;

-активизировать познавательную деятельность учащихся, поддержать интерес к предмету;

- воспитывать уважение друг к другу, взаимопонимание, уверенность в себе.

Ход урока.

1. Организационный момент.

Вступительное слово учителя.

Мир, в котором мы живем, наполнен геометрией домов и улиц, гор и полей, творениями природы и человечества. Лучше ориентироваться в нем, открывать новое, понимать красоту и мудрость окружающего мира поможет нам хорошее знание такого предмета как геометрия.

И сегодня на уроке, тема которого «Теорема о площади треугольника» мы попытаемся выявить связи геометрии с различными областями человеческих знаний, в частности, на примере решения задач с практическим применением.

Сначала послушаем о том, как развивалась геометрия в России.

Выступает ученик.

Потребности земледелия, строительства и военного дела породили начала геометрии у всех народов, в том числе и у славян. Уже в старинных памятниках русской истории мы встречаем начальные сведения по геометрии.

Исконно русским руководством, излагавшим приемы измерения площадей, является «Книга сошного письма», самый древний экземпляр которой относится к 1629 году. Имеются сведения, что оригинал был составлен еще раньше, при Иване Грозном в 1556 году.

При вычислении площадей фигур рекомендуется в этой книге разбивать их на квадраты, прямоугольники, треугольники, трапеции. Площади квадрата и прямоугольника вычислялись по применяемым сейчас правилам. Площадь же треугольника находилась кА половина произведения основания на боковую сторону. Последнее правило, буквально понятое. Неверно, так как оно справедливо лишь для прямоугольного треугольника. Но этими же правилами когда-то пользовались древние египтяне.

Возможно. Что русская землемерная практика имела дело только с прямоугольными или почти прямоугольными треугольниками, и в таком случае мы не имеем основания делать упрек нашим предкам в незнании правил начальной геометрии. В те отдаленные времена земля не являлась предметом купли-продажи, и точность результата измерения играла незначительную роль.

Оказывается, что в южнорусских губерниях, где свободной земли было много и она поэтому не ценилась, такие приемы оценки площадей применялась еще в 19 веке.

При Иване Грозном было составлено и первое русское руководство по землемерию – книга «… глубокомудрая, дающая легкий способ измерять места самые недоступные, плоскости, дебри». А в середине 16 века была составлена первая общая карта Европейской России, которая вместе с «чертежами Сибирских земель» 1667 года считается замечательным памятником русской картографии. В одной из рукописей 16 века впервые упоминается «премудрый Клидас», то есть основоположник нашей современной геометрии – Евклид.

Задача.

Найдите площадь земельного участка, имеющего форму треугольника, у которого известны две стороны и угол между ними.

http://newfound.ru/wp-content/uploads/media/%D0%9E%D1%82%D0%BA%D1%80%D1%8B%D1%82%D1%8B%D0%B8%CC%86-%D1%83%D1%80%D0%BE%D0%BA-%D0%BF%D0%BE-%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B8-%D0%B2-9-%D0%BA%D0%BB%D0%B0%D1%81%D1%81%D0%B5/image1.png

2. Актуализация знаний. Повторение теории:

1. ( Фронтальная работа с классом.)

1) Какие формулы используются для вычисления координат точки А?

(Ответ: х = ОА ∙ cosα; у = ОА ∙ sinα.)

2) Какие формулы используются для вычисления площади:

а) треугольника; б) параллелограмма?

Формулы площади треугольника:

S=ab, где а, b — катеты прямоугольного треугольника,

S= ah, где а — основание треугольника, h- высота,

Формула Герона:

S = , р = — полупериметр

а, b, с-стороны треугольника

2. Решение задач по готовым чертежам

Найдите площадь треугольника

http://newfound.ru/wp-content/uploads/media/%D0%9E%D1%82%D0%BA%D1%80%D1%8B%D1%82%D1%8B%D0%B8%CC%86-%D1%83%D1%80%D0%BE%D0%BA-%D0%BF%D0%BE-%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B8-%D0%B2-9-%D0%BA%D0%BB%D0%B0%D1%81%D1%81%D0%B5/image5.png

Ответы: 6; 6; 28

3. Изучение нового материала

Вывод формулы о площади треугольника можно получить в процессе решения задачи в творческих группах с последующим обсуждением всех вариантов решений.

Задача:

http://newfound.ru/wp-content/uploads/media/%D0%9E%D1%82%D0%BA%D1%80%D1%8B%D1%82%D1%8B%D0%B8%CC%86-%D1%83%D1%80%D0%BE%D0%BA-%D0%BF%D0%BE-%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B8-%D0%B2-9-%D0%BA%D0%BB%D0%B0%D1%81%D1%81%D0%B5/image6.png

Дано: Треугольник ABC, BC=a, CA=b, S-площадь треугольника.

Доказать: S=absinC

Доказательство: S=ah, h=bsinC.

Следовательно: S=absinC

Итак, мы доказали теорему о площади треугольника

Теорема: Площадь треугольника равна половине произведения двух его сторон на синус угла между ними.

4. Решение задач

1) № 1020(а)

Дано: АВС, АВ = 6см, АС = 4 см, <А = 60˚

Найти: S = ?

Ответ: 12

2) № 1022

Дано: S = 60 см, АС = 15 см, <А = 30˚

Найти: АВ = ?

Ответ: 16 см.

3) Найти площадь равнобедренного треугольника с углом при основании 15˚ и боковой стороной, равной 5 см.

Ответ: 6,25 см.

4) В параллелограмме АВСD АВ = 6, АD = 4, sinA = 0,8. Найдите большую высоту параллелограмма.

Ответ: 4,8

5) . Основания равнобедренной трапеции равны 6 и 12. Синус острого угла трапеции равен 0,8. Найдите боковую сторону трапеции

Ответ: 5

5. Самостоятельная работа

1 вариант

1. Найдите:

а) sin α, если cos α = ;

б) cos α, если sin α =;

в) tg α, если cos α =

2. Проверьте, лежат ли на единичной полуокружности точки:

а) А (); б) В(7; 3); в) С(;)

3. Стороны треугольника равны 5см и 6см, а угол между ними равен 30˚.

2 вариант

1. Найдите:

а) sin α, если cos α = ;

б) cos α, если sin α =;

в) tg α, если cos α =

2. Проверьте, лежат ли на единичной полуокружности точки:

а) А(); б) В(;); в) С(2;3 )

3. Стороны треугольника равны 4см и 7см, а угол между ними равен 45˚.

Ответы к задачам самостоятельной работы

1 вариант

1. а) ; б) ; -; в) .

2. а) да; б) нет; в) нет

3. 7,5 см2

2 вариант

1. а) ; б) ; -; в) .

2. а) да; б) нет; в) нет

3. 7 см2

6. Итог урока: Какую теорему мы изучили?

В формуле площади треугольника, где по отношению к сторонам а и в треугольника расположен угол?

7. Домашнее задание: П. 100 с.252, в. 7, № 1020(б, в), № 1021.

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy



Автор
Дата добавления 09.01.2016
Раздел Математика
Подраздел Конспекты
Просмотров127
Номер материала ДВ-320187
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх