Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / Конспект урока "Проценты в математике"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Конспект урока "Проценты в математике"

библиотека
материалов

Саракташский районный отдел образования

Муниципальное общеобразовательное бюджетное учреждение

«Черкасская средняя общеобразовательная школа имени Чумакова Г.Т»









Урок – повторения в 9 классе

по теме: «Проценты в математике.»





Дедловский Юрий Анатольевич,

учитель математики,

высшая квалификационная категория,

педагогический стаж 35 лет






Черкассы 2012 г.

Результаты деятельности:

Личностные результаты: учебно-познавательный интерес к практическому применению процентов, способность к самооценке на основе критериев успешности учебной деятельности.

Метапредметные результаты:

Регулятивные: принимать и сохранять учебную задачу; учитывать правило в планировании и контроле способа решения;

Познавательные: осуществлять подведение под понятие выделения существенных признаков;

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности.

Цель урока: повторить понятие процента; показать способы нахождения процента; совершенствовать навыки решения задач и примеров; развивать умение рассуждать и обобщать.

Тип урока: повторение полученных знаний(подготовка к ГИА)

Ход урока.

Что такое проценты в математике? Как решать задачи на проценты? Эти вопросы всплывают, увы, внезапно… Когда выпускник читает задание ГИА. И ставят его в тупик. А зря. Это очень простые понятия.

Единственно, что нужно запомнить железно – что такое один процент. Это понятие - и есть главный ключ к решению задач на проценты, да и к работе с процентами вообще.

Один процент – это одна сотая часть какого-то числа. И всё. Нет больше никаких мудростей.

Резонный вопрос – а сотая часть  какого числа? А вот того числа, о котором идёт речь в задании. Если там говорится о цене, один процент – это одна сотая часть цены. Если о скорости, один процент – это одна сотая часть скорости. И так далее. Понятно, что само число, о котором идёт речь, составляет всегда 100%. А если нет самого числа, то и проценты смысла не имеют…

Другое дело, что в сложных задачах само число так запрячут, что и не найдёшь. Но мы на сложное пока не замахиваемся. Разбираемся с процентами в математике.

Я не зря акцентирую слова один процент, одна сотая. Запомнив, что такое один процент, вы легко найдёте и два процента, и тридцать четыре, и семнадцать, и сто двадцать шесть! Сколько надо, столько и найдёте.

А это, между прочим, основное умение для решения задач на проценты.

Попробуем?

Давайте найдём 3% от 400. Сначала найдём один процент. Это будет одна сотая, т.е. 400/100 = 4. Один процент – это 4. А нам сколько процентов надо? Три. Вот и умножаем 4 на три. Получим 12. Всё. Три процента от 400 – это 12.

5% от 20 это будет 20 поделить на 100 (одна сотая – 1%), и умножить на пять (5%):

001

5% от 20 это будет 1. Всё.

Проще некуда. Давайте-ка быстро, пока не забылось, потренируемся!

Найдите, сколько будет:
5%  от 200 рублей.
8%  от 350 километров.
120%  от 10 литров.
15% от  60 градусов.
4% отличников от 25 учащихся.
10% двоечников из 20 человек.

Ответы (в полном беспорядке): 9, 10, 2, 1, 28, 12.

Эти числа – количество рублей, градусов, учеников и т.д.  Я не написал, сколько чего, чтобы решать интересней было…

А если нам нужно записать х% от какого-то числа, например, от 50? Да всё то же самое. Один процент от 50 – это сколько? Правильно, 50/100 = 0,5. А у нас этих процентов – х. Ну и умножим 0,5 на х! Получим, что х% от 50 это – 0,5х.

Надеюсь, что такое проценты в математике вы уяснили. И легко сможете найти любое количество процентов от любого числа. Это просто. Вам сейчас по силам примерно 60% от всех задач на проценты! Уже больше половины. Ну что, добиваем оставшееся? Ладно, как скажете!

В задачах на проценты частенько встречаются обратная ситуация. Нам дают величины (какие угодно), а надо найтипроценты. Освоим и этот нехитрый процесс.

3 человека из 120 – это сколько процентов? Не знаете? Ну, тогда, пусть это будет х процентов.

Вычислим  х% от 120 человек. В человеках. Это мы умеем. 120 делим на 100 (вычисляем 1%) и умножаем на х (вычисляем х%). Получаем 1,2х.

Осмыслим результат.

х процентов от 120 человек, это 1,2х человек. А таких человек у нас три. Остаётся приравнять:

1,2х = 3

Решаем это уравнение

002

Вспоминаем, что за икс мы брали количество процентов. Значит 3 человека от 120 человек – это 2,5%.

Вот и всё.

Можно и по-другому. Обойтись простой смекалкой, безо всяких уравнений. Соображаем, во сколько раз 3 человека меньше 120? Делим 120 на 3 и получаем 40. Значит, 3 меньше 120 в 40 раз.

Искомое количество людей в процентах будет во столько же раз меньше 100%. Ведь 120 человек – это и есть 100%.  Делим 100 на 40, 100/40 = 2,5

Вот и всё. Получили 2,5%.

Есть ещё способ пропорций, но это, в сущности, то же самое в сокращенном варианте. Все эти способы – правильные. Как вам удобнее, привычнее, понятнее – так и считайте.

Опять тренируемся.

Посчитайте, сколько процентов составляют:
3 человека из 12.
10 рублей от 800.
4 учебника из 160 книг.
24 правильных ответа на 32 вопроса.
2 угаданных ответа на 32 вопроса.
9 попаданий из 10 выстрелов.

Ответы (в беспорядке): 75%, 25%, 90%, 1,25%, 2,5%, 6,25%.

В процессе вычислений вы вполне можете столкнуться с дробями. В том числе и неудобными, типа 1,333333… А кто вам велел калькулятором пользоваться? Сами? Не надо. Считайте без калькулятора, как написано в теме дроби Проценты всякие бывают…

Вот мы и освоили переход от величин к процентам и обратно. Можно браться за задачки.

Задачи на проценты.

В ГИА задачи на проценты очень популярны. От самых простых до сложных. В этом разделе мы работаем с простыми задачами. В простых задачах, как правило, нужно перейти от процентов к тем величинам, о которых идёт речь в задаче. К рублям, килограммам, секундам, метрам, и так далее. Или наоборот. Это мы уже умеем. После этого задача становится понятной и легко решается. Не верите? Смотрите сами.
Пусть у нас есть такая задачка.

«Проезд на автобусе стоит 14 рублей. В дни школьных каникул для учащихся ввели скидку 25%. Сколько стоит проезд на автобусе в дни школьных каникул?»

Как решать? Если мы узнаем, сколько 25% в рублях – то и решать-то нечего. Отнимем скидку от исходной цены – и все дела!

Но мы уже умеем это узнавать! Сколько будет один процент от 14 рублей? Одна сотая часть. То есть 14/100 = 0,14 рубля. А таких процентов у нас 25. Вот и умножим 0,14 рубля на 25. Получим 3,5 рублей. Вот и всё. Величину скидки в рублях мы установили, остаётся узнать новую стоимость проезда:

14 – 3,5 = 10,5.

Десять с половиной рублей. Это ответ.

Как только от процентов перешли к рублям, всё стало просто и понятно. Это общий подход к решению задач на проценты.

Понятное дело, не все задачи одинаково элементарны. Есть и посложнее. Подумаешь! Мы и их сейчас порешаем. Сложность в том, что всё наоборот. Нам даны какие-то величины, а найти надо проценты. Например, такая задача:

«Раньше Вася решал правильно две задачи на проценты из двадцати. После изучения темы на одном полезном сайте, Вася стал решать правильно 16 задач из 20. На сколько процентов поумнел Вася? За стопроцентный ум считаем 20 решённых задач.»

Раз вопрос про проценты (а не рубли, килограммы, секунды и т.д.), то и переходим к процентам. Узнаем, сколько процентов Вася решал до поумнения, сколько процентов после – и дело в шляпе!

Считаем. Две задачки из 20 – это сколько процентов? 2 меньше 20 в 10 раз, правильно? Значит, количество задачек в процентахбудет в 10 раз меньше, чем 100%. То есть 100/10 = 10.

10%. Да, немного решал Вася… На ГИА делать нечего. Но вот он поумнел, и решает 16 задач из 20. Считаем, сколько это будет процентов? Во сколько раз 16 меньше 20? Навскидку и не скажешь… Придётся делить.

003

В 5/4 раза. Ну а теперь делим 100 на 5/4:

004

Вот. 80% это уже солидно. А главное – не предел!

Но это ещё не ответ! Читаем задачу снова, чтобы не ошибиться на ровном месте. Да, нас спрашивают, на сколько процентов поумнел Вася? Ну, это просто. 80% - 10%  = 70%.  На 70%.

70% - это правильный ответ.

Как видите, в простых задачках достаточно перевести заданные величины в проценты, или заданные проценты – в величины, как всё и проясняется. Ясное дело, что в задачке вполне могут быть и  дополнительные навороты. Которые, часто, к процентам отношения и не имеют вовсе. Тут, главное, внимательно условие читать и по шагам, не спеша, разворачивать задачку. Об этом мы в следующей теме поговорим.

Но есть в задачах на проценты одна серьёзная засада! Многие в неё попадают, да… Выглядит эта засада вполне невинно. Например, вот такая задачка.

«Красивая тетрадка летом стоила 40 рублей. Перед началом учебного года, продавец поднял цену на 25%. Однако, тетрадки стали покупать так плохо, что он снизил цену на 10%. Всё равно не берут! Пришлось ему снизить цену ещё на 15%. Вот тут торговля пошла! Какова была окончательная цена тетрадки?»

Ну, как? Элементарно?

Если вы стремительно и радостно дали ответ  «40 рублей!», то вы попали в засаду…

Фокус в том, что проценты всегда считаются от чего-то.

Вот и считаем. На сколько рублей продавец взвинтил цену? 25% от 40 рублей - это 10 рублей. То есть, подорожавшая тетрадка стала стоить 50 рублей. Это понятно, да?

А теперь нам надо сбросить цену на 10% от 50 рублей. От 50, а не 40! 10% от 50 рублей – это 5 рублей. Следовательно, после первого удешевления тетрадь стала стоить 45 рублей.

Считаем второе удешевление. 15% от 45 рублей (от 45, а не 40, или 50!) – это 6,75 рубля. Стало быть, окончательная цена тетрадки:

 45 – 6,75 = 38,25 рубля.

Вот так.

Как видите, засада заключается в том, что проценты считаются каждый раз от новой цены. От последней. Так бывает практически всегда. Если в задаче на последовательное повышение-понижение величины открытым текстом не сказано, от чего считать проценты, надо считать их от последнего значения. И то, правда. Продавец откуда знает, сколько раз эта тетрадка дорожала-дешевела до него и сколько она стоила в самом начале…

Кстати, теперь вы можете подумать, зачем в задачке про умного Васю написана последняя фраза? Вот эта: «За стопроцентный ум считаем 20 решённых задач»? Вроде и так всё ясно… Э-э-э… Как сказать. Если этой фразы не будет, Вася вполне может посчитать за 100% свои начальные успехи. То есть две решённые задачки. А 16 задач – в восемь раз больше. Т.е. 800% ! Вася сможет вполне оправданно говорить о собственном поумнении аж на 700%!

А ещё можно и 16 задач взять за 100%. И получить новый ответ. Тоже правильный…

Отсюда вывод: самое главное в задачах на проценты – чётко определить, от чего надо считать тот или иной процент.

Это, кстати, и в жизни надо. Там, где проценты используются. В магазинах, банках, на акциях всяких. А то ждёшь 70% скидки, а получаешь 7%. И не скидки, а удорожания… И всё честно, сам просчитался.

 

Ну вот, представление о процентах в математике вы получили. Отметим самое важное.

Практические советы:

1. В задачах на проценты – переходим от процентов к конкретным величинам. Или, если надо – от конкретных величин к процентам. Внимательно читаем задачу!

2. Очень тщательно изучаем, от чего нужно считать проценты. Если об этом не сказано прямым текстом, то обязательно подразумевается. При последовательном изменении величины, проценты подразумеваются от последнего значения. Внимательно читаем задачу!

3. Закончив решать задачу, читаем её ещё раз. Вполне возможно, вы нашли промежуточный ответ, а не окончательный. Внимательно читаем задачу!

 Решите несколько задач на проценты. Для закрепления, так сказать. В этих задачках я постарался собрать все главные трудности, которые поджидают решающих. Те грабли, на которые чаще всего наступают. Вот они:

1. Элементарная логика при анализе простых задачек.

2. Правильный выбор величины, от которой нужно считать проценты. Сколько народу споткнулось на этом! А ведь есть оч-ч-чень простое правило...

3. Проценты от процентов. Мелочь, а смущает здорово...

4. И ещё одни вилы. Связь процентов с дробями и частями. Перевод их друг в друга.

Решаем?)

«В олимпиаде по математике принимали участие 50 человек. 68% учеников решили мало задач. 75% оставшихся решили средне, а остальные – много задач. Сколько человек решило много задач?»

Подсказка. Если у вас получаются дробные ученики – это неправильно.  Читайте внимательно задачу, есть там одно важное слово…  Ещё задачка:

«Вася (да-да, тот самый!) очень любит пончики с повидлом. Которые пекут в булочной, через одну остановку от дома. Стоят пончики по 15 рублей за штуку. Имея в наличии 43 рубля, Вася поехал в булочную на автобусе за 13 рублей.  А в булочной шла акция «Скидка на всё – 30%!!!». Вопрос: сколько дополнительных пончиков не смог купить Вася из-за своей лени (мог бы и пешком прогуляться, правда?)»

 Короткие задачки.

На сколько процентов 4 меньше 5?

 На сколько процентов 5 больше 4?

 Длинная задача...

Коля устраивался на несложную работу, связанную с расчётом процентов. При собеседовании начальник с хитрой улыбкой предложил Коле два варианта оплаты труда. По первому варианту Коле сразу назначалась ставка 15000 руб в месяц. По второму Коле, если он согласится, первые 2 месяца будут выплачивать пониженную на 50% зарплату. Типа, как новичку. Зато потом увеличат его пониженную зарплату аж на 80%!

Коля посещал один полезный сайт в Интернете... Поэтому, подумав шесть секунд, с лёгкой улыбкой выбрал первый вариант. Начальник улыбнулся в ответ и установил Коле постоянную зарплату в 17000 руб.

Вопрос: Сколько денег в расчёте за год (в тысячах рублей) Коля выиграл на этом собеседовании? Если сравнивать с самым неудачным вариантом? И ещё: что они всё время улыбались-то!?)

 Опять короткая задачка.

Найти 20% от 50%.

 И снова длинная.)

Скорый поезд №205 "Красноярск - Анапа" сделал остановку на станции "Сызрань-город". Василий и Кирилл пошли в привокзальный магазинчик за мороженым для Лены и гамбургером для себя. Когда они купили всё необходимое, уборщица магазина сообщила, что их поезд уже поехал... Василий и Кирилл быстро-быстро побежали и успели заскочить в вагон. Вопрос: успел бы в этих условиях заскочить в вагон чемпион мира по бегу? 
Считаем, что в обычных условиях чемпион мира бежит на 30% быстрее Василия и Кирилла. Однако, стремление догнать вагон (он был последний), угостить Лену мороженым и съесть гамбургер, увеличило их скорость на 20%. А мороженое с гамбургером в руках чемпиона и шлёпанцы на ногах уменьшили бы его скорость на 10%...

 А вот задачка без процентов... Интересно, зачем она здесь?)

Определить, сколько весит 3/4 яблока, если всё яблоко весит 200 граммов?

 И последняя.

В скором поезде №205 "Красноярск - Анапа" попутчики разгадывали сканворд. Лена отгадала 2/5 всех слов, а Василий отгадал одну треть оставшихся. Затем подключился Кирилл и разгадал 30% всего сканворда! Серёжа отгадал последние 5 слов. Сколько всего слов было в сканворде? Верно ли, что Лена отгадала больше всех слов?

 Ответы в традиционном беспорядке и без наименований единиц. Где пончики, где ученики, где рубли с процентами – это вы уж сами…

10; 50; да; 4; 20; нет; 54; 2; 25; 150.

Ну и как? Если всё сошлось - поздравляю! Проценты - не ваша проблема. Можно смело идти работать в банк.)

Что-то не так? Не получается? Не умеете быстро считать проценты от числа? Не знаете очень простых и понятных правил? От чего считать проценты, например? Или, как перевести дроби в проценты?




Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 28.09.2015
Раздел Математика
Подраздел Конспекты
Просмотров321
Номер материала ДВ-015862
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх