238847
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 60%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаКонспектыУрок по математике по теме «Линейные уравнения с параметрами»

Урок по математике по теме «Линейные уравнения с параметрами»

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 258 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Линейные уравнения с параметрами.

Рассмотрим задачу. В магазин на 7 автомашинах различной грузоподъёмности привезли 90 ящиков яблок. В некоторых машинах было по 15 ,а в других по m ящиков. Определить, сколько машин привезли по 15,сколько по m ящиков.

Проверить решение при m=8,10,15,20.

Если предположить, что х машин привезли по m ящиков, то решение задачи сведётся к нахождению целого положительного решения уравнения (15-m)х = 15.

По смыслу задачи х больше нуля и меньше семи,m меньше 90,причём х и m натуральные числа. Если на 5 машинах привезли по 12,то на2-х машинах- по 15 ящиков. Если же на 3-х машинах привезли по 10, то на 4-х машинах - по 15 ящиков.

Задача2.Два туриста ,идущие навстречу друг другу, встретились в пункте А и продолжили дальше свой путь .Первый турист до встречи прошёл S километров, а второй -Р км. Через сколько дней путешествия после встречи общие расстояния, пройденные каждым из туристов ,будут равны, если средняя скорость первого n км в день, а второго m км в день. Найти частные значения искомой величины при:

а) n=m,Р‡S

б) n=m, P=S

в)nm.

Указание. Пусть требуется пройти еще t дней после встречи, тогда решение задачи сведется к решению уравнения

(n-m)t=P-S,

где n,m,P,S – положительные числа. При n=m,PS нет решения; при n=m,P=S t-любое положительное число; при nm

t=P-S/n-m

Уравнения, которые мы получили, решая вышеприведенные задачи, после упрощений вид f(a)x=g(a) и g(a) обозначают либо числа, либо функции от a.В первой задаче, например, f(a)=15-m, g(a)=15 ;во второй задаче f(a)=n-m, g(a)=P-S.

Уравнения, содержащие буквенные коэффициенты, называются уравнениями с параметрами.

В средней школе обычно решаются уравнения с одним параметром, например, уравнения вида

сx=c+1, (b-4)=b+3, c/c-2+x2+2/(x2-1)(c-2)=22/x2-1 и т.д.

Уравнения вида f(a)x=g(a), где f(a) может принимать любые действительные значения, называется линейным.

Линейное уравнение при f(a) ‡0 имеет единственное решение x=g(a)/f(a);

при f(a)=0, g(a)=0 имеет бесконечное множество решений;

при f(a)=0, g(a) ‡0 не имеет решения.

Решение уравнения с параметром в обязательном порядке включает в себя и исследование решения.

Пример 1. Решить уравнение (c+1)x=1

Если c≠-1, то x=1/c+1. При c=-1 уравнение примет вид 0x=1. Уравнение не имеет решения.

C:\Users\Пользователь\Desktop\Безымянный.jpg

Графическая иллюстрация решения дана на рис.1

Пример 2. Решить уравнение c2x=c+x-1.

После преобразований имеем: (с2-1)x=c-1 (1)

Если c2-1≠0 т.е. с≠±1, то х=1/c+1

При с=-1 нет решения.

При с=1 уравнение (1) примет вид 0х=0. Значит, при с=1 Х-любое число.

Графическая иллюстрация на рис.2.C:\Users\Пользователь\Desktop\Безымянный.jpg

Ответ. При с≠±1 x=1/c+1; при с=-1 нет решения; при с=1 Х-любое число.







Упражнения (тренировочные)

Решить уравнения

1)2х+m=0

2)(m2+1)x=d

3)mx-2=0

4)cx-c=0

5)ax=a+1

6)ax-x-a=0

7)(n2-4)x=n+2

8)b(b+2)y=b2-3b

9)(3x+1/x-1)-( 2(x+1)/a(x-1))=a.



Краткое описание документа:

Методы решения линейных уравнений с параметрами,образцы решений и тренировочные упражнения.

Уравнения, содержащие буквенные коэффициенты:

"Пример 1. Решить уравнение (c+1)x=1

Если c≠-1, то x=1/c+1. При c=-1 уравнение примет вид 0x=1. Уравнение не имеет решения. Графическая иллюстрация решения дана на рис.1

"Пример 2. Решить уравнение c2x=c+x-1.

После преобразований имеем: (с2-1)x=c-1 (1) Если c2-1≠0 т.е. с≠±1, то х=1/c+1 При с=-1 нет решения. При с=1 уравнение (1) примет вид 0х=0. Значит, при с=1 Х-любое число. Графическая иллюстрация на рис.2. Ответ. При с≠±1 x=1/c+1; при с=-1 нет решения; при с=1 Х-любое число.

Линейные уравнения с параметрами.

"Рассмотрим задачу.

В магазин на 7 автомашинах различной грузоподъёмности привезли 90 ящиков яблок. В некоторых машинах было по 15 ,а в других по m ящиков. Определить, сколько машин привезли по 15,сколько по  m ящиков.Проверить решение при m=8,10,15,20.

Если предположить, что х машин привезли по m ящиков, то решение задачи сведётся к нахождению целого положительного решения уравнения (15-m)х = 15. По смыслу задачи х больше нуля и меньше семи,m меньше 90,причём х и m натуральные числа. Если на 5 машинах привезли по 12,то на2-х машинах- по 15 ящиков.

Если же на 3-х машинах привезли по 10, то на 4-х машинах - по 15 ящиков.

"Задача 2.

Два туриста ,идущие навстречу друг другу, встретились в пункте А и продолжили дальше свой путь .Первый турист до встречи прошёл S километров, а второй -Р км. Через сколько дней путешествия после встречи общие расстояния, пройденные каждым из туристов ,будут равны, если средняя скорость первого n км в день, а второго m км в день.

Найти частные значения искомой величины при:а) n=m,Р‡S б) n=m, P=Sв)n‡m.Указание. Пусть требуется пройти еще t дней после встречи, тогда решение задачи сведется к решению уравнения(n-m)t=P-S,где n,m,P,S – положительные числа. При n=m,P‡S нет решения; при n=m,P=S t-любое положительное число; при n‡mt=P-S/n-m

Уравнения, которые мы получили, решая вышеприведенные задачи, после упрощений вид f(a)x=g(a) и g(a) обозначают либо числа, либо функции от a.В первой задаче, например, f(a)=15-m, g(a)=15 ;во второй задаче f(a)=n-m, g(a)=P-S.Уравнения, содержащие буквенные коэффициенты, называются уравнениями с параметрами.

Общая информация

Номер материала: 16096101336

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Оставьте свой комментарий
Для того чтобы задавать вопросы нужно авторизироватся.
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.