Инфоурок / Математика / Другие методич. материалы / Метод сравнения-один из эффективных методов познания на уроках математики
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Педагогическая деятельность в соответствии с новым ФГОС требует от учителя наличия системы специальных знаний в области анатомии, физиологии, специальной психологии, дефектологии и социальной работы.

Только сейчас Вы можете пройти дистанционное обучение прямо на сайте "Инфоурок" со скидкой 40% по курсу повышения квалификации "Организация работы с обучающимися с ограниченными возможностями здоровья (ОВЗ)" (72 часа). По окончании курса Вы получите печатное удостоверение о повышении квалификации установленного образца (доставка удостоверения бесплатна).

Автор курса: Логинова Наталья Геннадьевна, кандидат педагогических наук, учитель высшей категории. Начало обучения новой группы: 27 сентября.

Подать заявку на этот курс    Смотреть список всех 203 курсов со скидкой 40%

Метод сравнения-один из эффективных методов познания на уроках математики

библиотека
материалов

Метод сравнения - один из эффективных методов познания на уроках математики.


Вера Васильевна Ярмонова учитель математики

Статья отнесена к разделу: Преподавание математики

Особую роль в организации продуктивной деятельности учащихся в процессе обучения математике играют методы , способствующие мотивации

Это, конечно же, метод сравнения, весьма эффективный инструмент не только познания, но и мотивации. Ученики на деле убеждаются, как один материал увязывается с другим. Ребята понимают, как важно учиться не от случая к случаю, а систематически.

За долгие годы работы в школе я обратила внимание, что есть такие понятия в математике, при изучении которых дети очень часто путаются или просто забывают. Если понятие “противоположных чисел” усваивается легко, то понятие “обратное число” улетучивается, не оставив следа. И вот тогда на помощь пришел метод сравнения.

Число

Противоположное

Обратное

3

-3

1/3

2/5

-2/5

5/2=2 1/2

-7/10

7/10

-10/7=-1 3/7

1 3/7

-1 3/7

7/10

-1,5

1,5

10/15=2/3

1/8

-1/8

8

0

0

Нет

А

1/а, при а =0

Подобная тренировка и сопутствующая беседа при составлении такой таблицы помогает ребятам прочно усвоить тему “обратное число” (6 класс), а заодно повторить “противоположное число”, а также учит умениям учебной деятельности – сравнивать.

При изучении темы “Десятичные дроби” (5 класс) на первый урок изучения действий с десятичными дробями я приглашаю старшеклассников, и, после того, как будет рассказано о десятичных дробях и истории их возникновения, слово предоставляется гостям: я их прошу показать, как выполняются действия с десятичными дробями.

Действия

Десятичные дроби

Натуральные числа

Сложение

72,13+5,16

 

Вычитание

102,34-71,56

 

Умножение

5,16*2,7

 

Деление

25,5 : 15

 

Примеры задаются несложные, пятиклассники быстро замечают, что это они уже имеют делать с натуральными числами, завязывается диалог, желающие поочередно подходят к доске, записывают и решают свои пример. Я подвожу итог дискуссии, предупреждаю о сложностях: а) 148,127+2,3; б) 144-0,144 и т.д. Далее зачитывается стихотворение о незадачливом Косте Жигалине (“Три десятых” Вл. Лифшица). Успокаивает, что упорство и труд помогут справиться с любыми трудностями, надо только с уважением относиться к запятой. Эту тему ученики 5-го класса будут отрабатывать по индивидуальной, уровневой системе обучения.

Параллельно изучаются и такие темы: “Признаки подобия и равенства треугольников”, “Арифметическая и геометрическая прогрессии”, “Равные фигуры”, “Равновеликие фигуры”. Например, темы “Равные и равновеликие фигуры” изучаются в виде практической работы. С помощью ножниц мы с ребятами конструируем трапеции и параллелограммы из треугольника, из четырехугольника строим треугольники различных видов, и каждый раз проговариваем равновеликие фигуры. Данный прием позволяет надолго запомнить, что мы понимаем под сочетанием слов “равновеликие фигуры”. А учителю целесообразно составить серию “Задачи конструкторского бюро” и для закрепления темы предложить отработать самостоятельно. Актуально, что на ЕГЭ 2002 года была предложена геометрическая задача, легко решаемая методом площадей равновеликих фигур.

При подготовке к выпускным экзаменам параллельно повторяются решение линейных неравенств и квадратичных неравенств x - 18 > 7 и x2 - 18 > 7. А также параллельно изучаются следующие темы: отрезок, луч, прямая; координатная прямая и координатная плоскость; прямые и обратные задачи на части; квадрат разности и разность квадратов; прямые и обратные теоремы; признаки и свойства параллельных прямых и параллелограмма. При изучении темы “Свойства квадратичной функции” закрепление происходит с помощью серии заданий на сходства и различия в графиках.

http://festival.1september.ru/articles/211494/Image199.gif

Аналогично сравниваются графики функций:

y=2x;  y= 1/2x;  y=2/x.

Неоднократные повторения подобных упражнений всегда дают положительный результат.

Достоинство данного метода не только в возможности исключения наиболее характерных ошибок, но и возможности неоднократного повторения многих тем. Это не только метод мотивации через значимость всего, что изучается в математике. Этот метод помогает развить умение анализировать ситуацию, мыслить логически, способствует интеллектуальному развитию личности. Ученик понимает, как важно знать одно, чтобы понимать другое. Развивая из урока в урок умение сравнивать, учитель создает предпосылки для успешного решения следующих заданий:

  • Какие числа делятся на 6 и на 15?

  • При каких значениях а верно равенство а + | а | = 0 и при каких неверно?

  • Найти наибольшее значение выражений - | x | ;  2 - | x | ;  -| x - 1 | ;  - (x - 1)2 .

Решая одновременно задачи на проценты через определения с помощью составления отношения, составляя пропорцию и решая уравнение, ученик знакомится с различными методами решения задач. В данном случае, естественно, ставится проблема о рациональности того или другого метода.



Общая информация

Номер материала: ДВ-150340

Похожие материалы