Инфоурок / Математика / Статьи / Статья на тему "Приемы и технологии, применяемые на уроках математики в рамках концепции личностно ориентированного обучения""
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Я люблю природу», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 15 ДЕКАБРЯ!

Конкурс "Я люблю природу"

Статья на тему "Приемы и технологии, применяемые на уроках математики в рамках концепции личностно ориентированного обучения""

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов

Вакуленко Ольга Борисовна

ФГАУ ВО «КРЫМСКИЙ ФЕДЕРАЛЬНЫЙ УНИВИРСИТЕТ

им. В.И. ВЕРНАДСКОГО» ГУММАНИТАРНО-ПЕДАГОГИЧЕСКАЯ АКАДЕМИЯ

ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ г. Ялта


Приемы и технологии, применяемые на уроках математики в рамках концепции личностно ориентированного обучения



Термин «развивающее обучение» активно используется в психологической, педагогической и методической литературе. Тем не менее, содержание этого понятия остается до сих пор весьма проблематичным, а ответы на вопрос: «Какое обучение можно назвать развивающим?» довольно противоречивы. Это, с одной стороны, обусловлено многоаспектностью понятия «развивающее обучение», а с другой стороны, некоторой противоречивостью самого термина, т.к. вряд ли можно говорить о «неразвивающем обучении».

Не случайно термин «развивающее обучение» методисты используют с большой осторожностью. Сложные динамические связи между процессами обучения и психического развития ребенка не являются предметом исследования методической науки, в которой практические результаты обучения принято описывать на языке знаний, умений и навыков. [4]

Так как изучением психического развития ребенка занимается психология, то при построении развивающего обучения методика, несомненно, должна опираться на результаты исследований этой науки.

Как пишет В.В. Давыдов, «психическое развитие человека – это, прежде всего, становление его деятельности, сознания и, конечно, всех «обслуживающих» их психических процессов (познавательных процессов, эмоций и т. д.)». [3]

Отсюда следует, что развитие учащихся во многом зависит от той деятельности, которую они выполняют в процессе обучения.

Рассмотрим возможности активного включения в процесс обучения математике различных приемов умственных действий.

Анализ и синтез. Важнейшими мыслительными операциями являются анализ и синтез. Анализ связан с выделением элементов данного объекта, его признаков или свойств. Синтез – это соединение различных элементов, сторон объекта в единое целое.

В мыслительной деятельности человека анализ и синтез дополняют друг друга, так как анализ осуществляется через синтез, синтез – через анализ.

Формированию этих умений может способствовать:

а) рассмотрение данного объекта с точки зрения различных понятий;

б) постановка различных заданий к данному математическому объекту.

Прием классификации. Умение выделять признаки предметов и устанавливать между ними сходство и различие – основа приема.

При формировании приема сравнения, дети сначала выполняют задания на классификацию хорошо знакомых предметов и геометрических фигур. Умение выполнять классификацию формируется у школьников в тесной связи с изучением конкретного содержания. Например, для упражнений в счете им часто предлагаются иллюстрации, к которым можно поставить вопросы, начинающиеся со слова «Сколько ...?».[1]

Прием аналогии. Понятие «аналогичный» в переводе с греческого языка означает «сходный», «соответственный», понятие аналогия – сходство в каком-либо отношении между предметами, явлениями, понятиями, способами действий. В процессе обучения математике учитель довольно часто говорит детям: «Сделайте по аналогии» или «Это аналогичное задание». Обычно такие указания даются с целью закрепления тех или иных действий (операций).

Прием обобщения. Выделение существенных признаков математических объектов, их свойств и отношений – основная характеристика такого приема умственных действий, как обобщение. Следует различать результат и процесс обобщения. Результат фиксируется в понятиях, суждениях, правилах. Процесс же обобщения может быть организован по – разному. В зависимости от этого говорят о двух типах обобщения – теоретическом и эмпирическом.

В курсе начальной математики наиболее часто применяется эмпирический тип, при котором обобщение знания является результатом индуктивных рассуждений (умозаключений).

Способы обоснования истинности суждений. Непременным условием развивающего обучения является формирование у учащихся способности обосновывать (доказывать) те суждения, которые они высказывают. В практике эту способность обычно связывают с умением рассуждать, доказывать свою точку зрения.

Взаимосвязь логического и алгоритмического мышления. Умение последовательно, четко и непротиворечиво излагать свои мысли тесно связано с умением представлять сложное действие в виде организованной последовательности простых. Такое умение называется алгоритмическим. Оно находит свое выражение в том, что человек, видя конечную цель, может составить алгоритмическое предписание или алгоритм (если он существует), в результате выполнения которого цель будет достигнута.[2,3]

Список литературы

  1. Манвелов С.Г. Современный урок математики: основы методики проведения/С.Г. Манвелов // Математика: приложение к газете «Первое сентября». 1998. № 38.

  2. Саранцев Г.И. Методика обучения математике в средней школе: учебное пособие для студентов мат. спец. пед. вузов и ун-тов / Г.И. Саранцев. М.: Просвещение, 2002.

  3. Саранцев Г.И. Современный урок математики/Г.И. Саранцев// Математика в школе. 2006. № 7.

  4. Якиманская И.С. Развивающее обучение. / И.С. Якиманская. М.: Педагогика, 1979, с. 70.







Общая информация

Номер материала: ДБ-199955

Похожие материалы