Инфоурок Математика Другие методич. материалыСтатья по математике «Подготовка к ЕНТ»

Статья по математике «Подготовка к ЕНТ»

Скачать материал

С 2004 года готовлю  учащихся к ЕНТ и считаю ,что этот способ извлечения квадратного корня столбиком  необходимо  объяснять учащимся ,так как на ЕНТ нм не разрешается пользоваться калькулятором.

 

При сдаче ЕНТ учащимся не разрешается пользоваться таблицами , калькуляторами.

Но при решении задач с помощью дробно-рациональных уравнений учащимся необходимо извлекать корни из больших чисел. Учащимся очень трудно без калькулятора да и время  у них ограничено.  Поэтому я  предлагаю на прикладных курсах по математике изучать старый способ извлечения квадратных корней столбиком , который в школьном курсе не изучается.

Например  при решении задачи: На перегоне в 600 км после прохождения 1/4путипоезд был задержан в пути на 1 час 30 минут. Чтобы прийти на конечную станцию во время , машинист увеличил скорость поезда на 15 км/ч.Сколько времени в пути был поезд?

Д=18225

Алгоритм извлечения квадратного корня столбиком

Этот способ позволяет найти приближённое значение корня из любого действительного числа с любой наперёд заданной точностью.

Для ручного извлечения корня применяется запись, похожая на деление столбиком. Пусть извлекается корень из целого числа A. В отличие от деления снос производится группами по две цифры, причём группы следует отмечать, начиная с десятичной запятой (в обе стороны), дописывая необходимым количеством нулей.

Найти an, квадрат которого наиболее близко подходит к группе старших разрядов числа A, оставаясь меньше последнего.

Провести вычитание из старших разрядов A квадрата числа an.

Удвоить an.

Сдвинуть остаток от вычитания на 2 разряда влево, а величину 2an – на один разряд влево. Под сдвигом в данном алгоритме понимается умножение / деление на степени 10, что соответственно является сдвигом влево и вправо.

Приписать справа от остатка вычитания два следующих старших разряда числа A.

Сравнить полученное число с нулём.

Если полученное число не равно 0, то найти такое 2an − 1, которое, будучи умноженным на (2a_n\cdot 10+a_{n-1}), даст в результате число, меньшее полученного на четвёртом шаге, но наиболее близкое к нему по значению. Перейти к п. 3.

Если в п. 6 получено равенство, то перейти к п. 4, предварительно приписав справа от an нуль.

После получения количества цифр, равного \frac {n}{2}, прекратить вычисления (если требуется целое значение) или продолжать до необходимой точности, записывая получающиеся цифры после запятой.

Описанная последовательность действий в математике получила название алгоритма извлечения квадратного корня.

1.         Чтобы извлечь квадратный корень из данного целого числа, разбивают его справа налево на грани, по две цифры в каждой, кроме первой (крайней левой), в которой может быть и одна цифра.

2.         Чтобы найти первую цифру корня, извлекают квадратный корень из первой грани.

3.         Чтобы найти вторую цифру, из первой грани вычитают квадрат первой цифры корня, к остатку сносят вторую грань и число десятков получившегося числа делят на удвоенную первую цифру корня; полученное целое число снова подвергают испытанию.

4.         Испытание проводится так: за вертикальной чертой (слева от остатка) пишут удвоенное, ранее найденное число корня, и к нему с правой стороны приписывают испытуемую цифру; получившееся после этой приписки число умножают на испытуемую цифру. Если после умножения получится число, больше остатка, то испытуемая цифра не годится и надо испытать следующую меньшую цифру.

5.         Следующие цифры корня находят с помощью того же приёма.

6.         Если после снесения грани число десятков получившегося числа окажется меньше делителя, т.е. меньше удвоенной найденной части корня, то в корне ставят 0, сносят следующую грань и продолжают действие дальше.

Пример№1. Извлечём корень 8464.

1-й шаг. Число 8464 разбиваем на грани справа налево; каждая из которых должна содержать две цифры. Получаем две грани: .84 /64

2-й шаг. Извлекаем квадратный корень из первой грани 84, получаем  .849 с недостатком. Цифра 9 – это первая цифра корня.

3-й шаг. Число 9 возводим в квадрат (92 = 81) и число 81 вычитаем из первой грани, получаем 84– 81 = 3. Число 3 – первый остаток.

4-й шаг. К остатку 3 приписываем вторую грань 64, получаем число 364.

5-й шаг. Удваиваем первую цифру корня 9 и, записывая слева, получаем:

84 /64=9

¯ 81

18… ¯¯¯¯¯364¯¯¯¯

К числу 18 нужно приписать такую наибольшую цифру, чтобы произведение числа, которое мы получим, на эту цифру было бы либо равно числу 354, либо меньше, чем 364. Это цифра 2. Она находится путем подбора: количество десятков числа 364, то есть число 36 делится на 18, получаем 2, так как 182 ∙ 2 = 364. Цифра 2 – это вторая цифра корня.

6-й шаг. Находим остаток 364 – 364 = 0. Так как остаток равен нулю, то мы получили точное значение корня – 92/ Процесс извлечения корня закончился. Число 92 – двузначное, так как подкоренное число 8464 содержит две грани. Корень из числа содержит столько цифр, сколько граней содержит это число.

Аналогично извлекают квадратный корень из десятичных дробей. Только подкоренное число разбивают на грани так, чтобы запятая была между гранями, т.е. от запятой влево и вправо. Если в крайней правой грани окажется одна цифра, то её дополняют дописыванием к числу нуля.

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Статья по математике «Подготовка к ЕНТ»" Смотреть ещё 4 961 курс

Методические разработки к Вашему уроку:

Рабочие листы
к вашим урокам

Скачать

Краткое описание документа:

С 2004 года готовлю учащихся к ЕНТ и считаю ,что этот способ извлечения квадратного корня столбиком необходимо объяснять учащимся ,так как на ЕНТ нм не разрешается пользоваться калькулятором.

При сдаче ЕНТ учащимся "не разрешается пользоваться таблицами , калькуляторами. Но при решении задач с помощью дробно-рациональных уравнений учащимся необходимо извлекать корни из больших чисел. Учащимся очень трудно без калькулятора да и время у них ограничено.

Поэтому я предлагаю на прикладных курсах по математике изучать старый способ извлечения квадратных корней столбиком , который в школьном курсе не изучается.С 2004 года готовлю учащихся к ЕНТ и считаю ,что этот способ извлечения квадратного корня столбиком необходимо объяснять учащимся ,так как на ЕНТ нм не разрешается пользоваться калькулятором.

Но при решении задач с помощью дробно-рациональных уравнений учащимся необходимо извлекать корни из больших чисел. Учащимся очень трудно без калькулятора да и время у них ограничено. Поэтому я предлагаю на прикладных курсах по математике изучать старый способ извлечения квадратных корней столбиком , который в школьном курсе не изучается.

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 871 390 материалов в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 05.06.2013 1926
    • DOCX 34 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Охрименко Нина Михайловна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Охрименко Нина Михайловна
    Охрименко Нина Михайловна
    • На сайте: 9 лет и 11 месяцев
    • Подписчики: 0
    • Всего просмотров: 81237
    • Всего материалов: 24

Оформите подписку «Инфоурок премиум»

Вы сможете бесплатно проходить любые из 4961 курс в нашем каталоге.

Перейти в каталог курсов

Мини-курс

Женская идентичность в 21 веке

3 ч.

749 руб.
Подать заявку О курсе
  • Этот курс уже прошли 11 человек

Мини-курс

Физическое воспитание и здоровье детей

2 ч.

749 руб.
Подать заявку О курсе
  • Этот курс уже прошли 11 человек

Мини-курс

Ароматерапия в работе психолога и психотерапевта

2 ч.

749 руб.
Подать заявку О курсе
  • Этот курс уже прошли 24 человека
Смотреть ещё 4 961 курс