73915
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 6.900 руб.;
- курсы повышения квалификации от 1.500 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 50%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаПрезентацииЭлектронный плакат «Теорема Пифагора» (презентация)

Электронный плакат «Теорема Пифагора» (презентация)

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Пифагор Самосский (лат. Pythagoras; 570 - 490 гг. до н. э.) - древнегреческий...
Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает...
Диагонали ромба равны 14 и 28 см. Найдите сторону ромба. В треугольнике два...
Если дан нам треугольник И притом с прямым углом, То квадрат гипотенузы Мы вс...
http://th-pif.narod.ru/ http://phizmat.org.ua/ http://chertkov.ucoz.ru/

Описание презентации по отдельным слайдам:

1 слайд
Описание слайда:

2 слайд
Описание слайда:

3 слайд
Описание слайда:

4 слайд Пифагор Самосский (лат. Pythagoras; 570 - 490 гг. до н. э.) - древнегреческий
Описание слайда:

Пифагор Самосский (лат. Pythagoras; 570 - 490 гг. до н. э.) - древнегреческий философ и математик, создатель религиозно-философской школы пифагорейцев. Историю жизни Пифагора трудно отделить от легенд, представляющих Пифагора в качестве полубога и чудотворца, совершенного мудреца и великого посвящённого во все таинства греков и варваров. Ещё Геродот называл его "величайшим эллинским мудрецом" (4.95). Основными источниками по жизни и учению Пифагора являются дошедшие до нас работы: философа-неоплатоника Ямвлиха (242-306 гг.) "О Пифагоровой жизни"; Порфирия (234-305 гг.) "Жизнь Пифагора"; Диогена Лаэртского (200-250 гг.) кн. 8, "Пифагор". Эти авторы опирались на сочинения более ранних авторов, из которых следует отметить ученика Аристотеля Аристоксена (370-300 гг. до н. э.) родом из Тарента, где сильны были позиции пифагорейцев. Таким образом, самые ранние известные источники писали о Пифагоре 200 лет спустя после его смерти, причём сам Пифагор не оставил собственных письменных трудов, и все сведения о нём и его учении основываются на трудах его учеников, не всегда беспристрастных.

5 слайд
Описание слайда:

6 слайд
Описание слайда:

7 слайд Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает
Описание слайда:

Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4“ Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Геометрия у индусов, как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 18 века до н. э.

8 слайд Диагонали ромба равны 14 и 28 см. Найдите сторону ромба. В треугольнике два
Описание слайда:

Диагонали ромба равны 14 и 28 см. Найдите сторону ромба. В треугольнике два угла равны 45º и 90º, а большая сторона – 20 см. Найдите две другие стороны треугольника. Найдите диагональ ромба, если вторая диагональ и сторона ромба соответственно равны 12 и 10 см. Основания равнобокой трапеции равны 4 и 12 см, а боковая сторона равна 5. Найдите высоту трапеции.

9 слайд Если дан нам треугольник И притом с прямым углом, То квадрат гипотенузы Мы вс
Описание слайда:

Если дан нам треугольник И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдем: Катеты в квадрат возводим, Сумму степеней находим — И таким простым путем К результату мы придем. И. Дырченко

10 слайд http://th-pif.narod.ru/ http://phizmat.org.ua/ http://chertkov.ucoz.ru/
Описание слайда:

http://th-pif.narod.ru/ http://phizmat.org.ua/ http://chertkov.ucoz.ru/

Краткое описание документа:
Электронный плакат в виде презентации, предназначен для изучения темы «Теорема Пифагора» в 8 классе, по геометрии и может быть использован как для уроков обобщения, так и для ознакомления с новой темой. В плакате много информационного материала, но также и есть задачи. Использование интерактивного плаката как мультимедийного в образовательном процессе, демонстрирует обучаемому процесс формирования ключевых понятий, как при работе в группе, так и при самостоятельной работе, позволяет сформировать необходимые качества.
Общая информация

Номер материала: 3878012329

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Оставьте свой комментарий
Для того чтобы задавать вопросы нужно авторизироватся.
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.